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ABSTRACT 

Arsenic (As), one of most toxic contaminants found in water, is well known to have 

adverse effects, such as skin cancer, on human health. The consumption of arsenic-

contaminated water has led to human health crises in many countries such as Bangladesh, 

China, and even the western United States. The new Environmental Protection Agency 

(EPA) standard for arsenic in drinking water is 10 [xg/L, and many smaller drinking water 

treatment plants are in need of additional treatment to achieve this standard. Recently, many 

researchers have been trying to find cost-effective and disposable adsorbents for the many 

small-scale water systems or individual ground wells that are used in most arsenic endemic 

areas. The adsorption of As(V) using iron- and aluminum-based adsorbents has been 

considered one of the most effective small-scale techniques for arsenic removal. 

Two types of nonporous iron- and aluminum-based adsorbents were used in this 

dissertation: iron oxide (Fe203) from a byproduct of the steel industry, and aluminum oxide 

(AI2O3) as a chemical powder. Due to their fast adsorption of As(V) anions and low cost, 

Fe203 and AI9O3 were found to be good and cost-effective adsorbents in lowering As(V) 

initial concentrations in drinking water at a lower pH (< 7). In the presence of competing 

ions, the adsorption of As(V) on Fe^O^ was decreased by selenium (IV), vanadium (V), 

phosphate, and silica while that on AI1O3 was reduced by these same ions, and also by sulfate. 

The phosphate anion is the most competitive ion in As(V) adsorption with either Fe2C>3 or 

AI2O3 as the adsorbent. When the cost and As(V) adsorption capacity of Fe203 and ALO3 in 

the presence and absence of competing solutes are compared, Fe203 is the more cost-

effective adsorbent for As(V) removal from drinking water. 
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CHAPTER 1. INTRODUCTION 

Adsorption of arsenic (As) using metal oxides is considered effective removal 

technology in drinking water treatment because of its relatively low cost, reliable removal 

efficiency, and simplicity of installation and maintenance. It has been reported that many 

small-scale water systems or individual groundwater wells, which are spread out over most 

arsenic endemic areas such as China, Bangladesh, the eastern India, and the western United 

States, are facing difficulties in removing arsenic from drinking water efficiently and 

economically. Therefore, many researchers have focused on the development of effective 

adsorbents of As(V) for Point of Entry (POE) and Point of Use (POU) water treatment 

systems, such as small-scale commercial or individual home water treatment systems. 

Recently, the use of iron- or aluminum-based adsorbents as disposable adsorbent media is 

being considered as a good alternative for arsenic removal from drinking water. This study 

focuses on two concerns: (1) evaluation of the possibility of Fe?03 and A1203 as effective 

adsorbents of As(V) for POE and POU water treatment systems, and (2) quantifying the 

effects of variables such as initial concentration of arsenic, dosage of adsorbents, pH, and 

competing solutes. 

This dissertation comprises five chapters. 

Chapter 2 presents a literature review on arsenic species, describing their 

characteristics, sources, and occurrences; their effects on human health; analytical methods 

used for identification and measurement of arsenic species; the available removal techniques 

for As(V) recommended by the US Environmental Protection Agency (US EPA); and 

adsorption of arsenic using various iron- and aluminum-based adsorbents—a necessity in 

developing new adsorbents. Additionally, the basic theories of adsorption, such as 

adsorption isotherm models and kinetic mechanisms, are discussed. The objectives of this 

chapter are based on two premises: (1) the necessity for removing arsenic from drinking 
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water and (2) the availability of iron- and aluminum-based adsorbents as effective adsorbents 

for the removal of As(V). 

Chapter 3 describes the evaluation of Fe2Oa and ALO3 as potential arsenic (V) 

adsorbents in water. Fe2O3 is introduced as a new and cost-effective adsorbent of arsenic (V) 

compared with AI2O3, which has characteristics similar to those of FeiO;. The properties of 

Fe203 and AI2O3 are described and the experimental apparatus and procedures used in this 

study are explained. Chapter 3 also summarizes the results obtained under various conditions 

for the best operational protocols, the As(V) adsorption capacities of Fe203 and AI2O3, and 

the kinetic mechanism of these adsorbents. 

Chapter 4 presents an investigation into the effect of competing solutes such as 

chloride, nitrate, sulfate, selenium(IV), vanadium(V), phosphate and silica on As(V) 

adsorption using Fe2C>3 and A1203. The chapter includes a discussion of the various 

chemicals used for competing solutes and of the instruments for identifying and measuring 

the components of solutes. It also describes the comparison of the As(V) the removal 

efficiency and adsorption capacity of Fe203 and AI2O3 with and without competing solutes, 

and suggests mechanisms of solute competition with Fe203 and AI2O3 in As(V)-

contaminated water. 

Finally, Chapter 5 presents a general conclusion, including the results from Chapters 

3 and 4. It also provides few recommendations for future research and for the application of 

Fe2Û3 in practical water treatment systems. 



www.manaraa.com

3 

CHAPTER 2. LITERATURE REVIEW: 

OCCURRENCE OF ARSENIC AND ADSORPTION OF As(V) USING IRON- AND 

ALUMINUM- BASED OXIDES 

2.1 PROPERTIES OF ARSENIC 

Elemental arsenic is yellow or metallic gray in color, very brittle, and not soluble in 

water, and it has a semi-metallic crystalline structure. Arsenic smells of garlic in air and 

oxidizes to arsenous oxide on heating. Arsenic and its compounds are poisonous (Buchanan, 

1962; Ferguson and Gavis, 1972). Table 2.1 summarizes the physical properties of arsenic. 

Arsenic has various industrial applications. It is used in bronzing and making agricultural 

pesticides and insecticides. It is used as a doping agent in solid-state devices such as 

transistors. It is also used as a laser material to transform electricity directly into coherent 

light (LANL, 2004). 

Table 2.1. Physical properties of arsenic 

Atomic symbol As 

Classification Metalloid 

Color Gray 

Crystal structure Rhombohedral 

Density @ 293 K 5.72 g/cm3 

Atomic mass 74.9216 

Atomic number 33 

Electronic configuration [As]4s-3d"%/ 

Oxidation states 5, 3, 0, -3 

Atomic radius 125 pm 

Melting point ~817°C 

Boiling point 603°C (sublimation) 
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Arsenic exists in both organic and inorganic forms. Arsenic combined with carbon 

and hydrogen is referred to as organic arsenic. In general, organic arsenic is found in marine 

animals and plants such as seaweed. Monomethyl arsenic acid (MM A A), dimethyl arsenic 

acid (DMAA), and arseno-sugars are some examples of organic arsenic compounds (NAS, 

2001). Arsenic combined with at least one other element like oxygen, chlorine, or sulfur, but 

no carbon is referred to as inorganic arsenic (US NLM, 2003). 

Inorganic arsenic exists in four main oxidation states, of which +3 [As(III)] and +5 

[As(V)] are the most common. The existence of arsenic in a specific oxidation state in the 

hydrosphere depends on various environmental factors such as reduction-oxidation reactions, 

pH conditions, general hydrochemistry, microbial activity, and other ionic distribution states, 

but the concentration of arsenic species mainly depends on redox potential and pH 

(Masscheleyn et al., 1991; Dzombak and Morrel, 1990; Bering et al., 1996). Figures 2.1 and 

2.2 show the distribution of the arsenic species as functions of redox potential (Eh) and pH, 

respectively (Ghimire et al., 2003; Brookins, 1988; Yan et al., 2000). As shown in the 

figures, under reducing conditions arsenite [As(III)] is the dominant form; however, arsenate 

[As(V)] is generally the thermodynamically more stable form in well-oxygenated 

environments. The major As(V) species is H2As04 " at a pKa of 6.9 and HAs04
2" at higher 

pH; however, both species of As(V) exist at the intermediate region (between pH 6 and 8). 

The dominant As(III) species is arsenious acid (H3ASO3) at a pKa of pH 9.3. Based on the 

typical pH of 6 to 8.5 in groundwater (CEES, 2005), the main arsenic species should be 

changed from arsenite to arsenate anions, specifically HAsCV", depending on oxidation 

conditions. 

2.2 SOURCES AND OCCURRENCE OF ARSENIC 

Arsenic combined with other metals such as arsenical irons (FeAs2 and Fe4As3) or 
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Figure 2.1. Eh-pH diagram for aqueous As species in the system As-02-H20 at 25°C and 

lbar total pressure ( Brookins, 1988; Smedly and Kinniburgh, 2002) 
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Figure 2.2. Distribution of arsenate and arsenite as a function of pH (Ghimire et al., 2003) 
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arsenical pyrites (FeSAs) exists in small quantities in crystalline rocks (Buchanan, 1962; 

Smedley and Kinniburgh, 2002). Volcanic eruptions and forest fires are other natural sources 

of arsenic. 

Arsenic is also a by-product of some anthropogenic activities including mining; 

smelting; petroleum refining; manufacturing of pharmaceuticals, glass, and cement; 

combustion of fuels and wastes; pulp and paper production; insecticides; pesticides; landfill 

leaching; and wood preservation (Nordstrom and Alpers, 1999; US EPA, 1999; Murphy and 

Guo, 2003). The US Environmental Protection Agency (US EPA) reported that 

approximately 8 million pounds of arsenic and arsenic containing compounds such as mine 

tailings, herbicides, and wood preservatives were distributed into the environment in 1997. 

In addition, 90% of all arsenic consumed in the United States came from one chemical wood 

preservative, chromated copper arsenate (CCA). This preservative was used to protect wood 

from decaying due to insects and microbial agents (US EPA, 2005). 

Arsenic is released into groundwater or surface water through erosion, dissolution, 

and weathering (Ferguson and Gavis, 1972; Reynolds et al., 1999). For example, ferric 

arsenate (FeAs04) is distributed into the hydrosphere in less than a week under a reduction 

and dissolution environment (Deuel and Swoboda, 1972). 

Arsenic concentrations in ground or surface water vary from 0.01 to more than 

500,000 fxg/L depending on the physical and hydrogeological environment, based on the data 

of some researchers (Smedley and Kinniburgh, 2002). Large aquifers with higher 

concentrations of arsenic (over 50 |ig/L) are found in some parts of the world such as 

Bangladesh, India, China, Chile, Taiwan, and the western United States. Arsenic 

concentrations in groundwater in the alluvial and delta aquifers of Bangladesh and West 

Bengal vary from less than 0.5 to 3200 fxg/L (BGS, 2001). Wickramasinghe et al. (2004) 

reported that the average arsenic concentration of well water at Sonargaon in Bangladesh was 

138 ^g/L. According to Wang and Huang (1994), deep groundwater of the Tianshan plains 
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in China contains arsenic at a maximum concentration of 2400 pig/L. Some researchers 

found that arsenic concentrations in groundwater in Taiwan vary from 10 to 1820 ^ig/L 

(Tseng et al., 1968; Kuo, 1968). Although arsenic concentrations in US source waters are 

generally low, some investigators have reported that the arsenic concentration is high in the 

water of some special environments such as mining tails, lake sediments, volcanic deposits, 

hydrothermal inputs, and underground aquifers (Welch et al., 1998; Welch and Lico, 1988; 

Mok and Wai, 1990; Judy et al., 2004). 

Figure 2.3 shows areas in the United States where at least 25% of the ground samples 

were found to have arsenic concentrations above a specified level. Orange and red colors on 

the map indicate the areas where more than 25% of the groundwater samples exceeded the 

revised arsenic maximum contamination level (MCL) of 10 ppb (USGS, 2000). In addition, 

the US EPA reported that over 6% of the community water systems (CWS) in many western 

states, Michigan, and some New England states have mean arsenic concentrations above the 

revised MCL (US EPA, 2000). 

Figure 2.3. The areas in the United States where at least 25% of the ground samples will have 

arsenic concentrations above a specified level (USGS, 2000). 

Asfug/Lkinatkat 
/s t les cxceal: 

|—| Insufficient 

Alaska * 31,350 Samples 
Geotimes 
November 2001 Hawaii 
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2.3 ENVIRONMENTAL TRANSPORT AND DISTRIBUTION 

Arsenic is released into the atmosphere from fossil-fuel combustion power plants, 

smelter operations, burning vegetation, volcanism, and other high-temperature processes 

(LANL, 2004). The above mentioned operations emit arsenic primarily in the form of AS2O3 

adsorbed on particulate matter (Cullen and Reimer, 1989). These particles are dispersed by 

the wind and are returned to the earth by wet or dry deposition. According to Nriagu and 

Pacyna (1988), about 70% of the global atmospheric As flux comprises approximately 

18,800 tons/acre of atmospheric arsenic from anthropogenic sources. Although not enough is 

known about the effects of airborne As compounds on the overall As cycle, these 

anthropogenic sources are still regarded as important contributors to airborne As 

compositions. 

In addition, arsines are known to release as biomethylate arsenics, from many 

activities of microorganisms (bacteria, molds, and yeasts) and animals present in soils or 

sediments, which on oxidation in the air reconvert to both volatile (e.g., methylarsines) and 

nonvolatile (e.g., methylarsonic acid and dimethylarsinic acid) arsenic compounds and settle 

back to the ground (Bentley and Chasteen, 2002). Furthermore, wind and water erosion 

weathers away rocks and soils, resulting in the transportation of these arsenic compounds. 

Many arsenic compounds tend to adsorb to soils, which on leaching usually results in 

transportation over short distances within soils. Figure 2.4 depicts the arsenic cycle in a 

mining environment (Bowell and Parshely, 2002). Mining does not produce arsenic directly; 

however, the primary host mineral containing arsenic is sometimes unstable. The unstable 

host mineral emits arsenic on oxidation or weathering in certain condition such as dumping 

or heaping of waste rock associated with arsenic. Also, when As-hosting ore is chemically 

treated (for example, smelting) prior to the extraction of the ore element, the arsenic 

composition may be released from its matrix, and in this form it becomes mobile. 
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Figure 2.4 Arsenic cycling in mining environment (Bowell and Parshely, 2002). 

2.4 PREOXIDATION OF As(III) TO As(V) 

As(V), bearing a negative charge, is more efficiently removed by metal oxidation 

than As(III), which exists in neutral form in groundwater. As(V) can be removed easier and 

faster than As(III) in water treatment systems. In addition, As(III) is gradually changed to 

As(V) in the presence of O? from air. 

Based on the above, a preoxidation step is required to convert As(III) to As(V) to 

remove arsenic from drinking waters with higher concentrations of As(III). Many different 

oxidizing agents such as oxygen, ozone, free chlorine, hypochlorite, permanganate, and 

hydrogen peroxide can be used for the oxidation of As (III) to As (V) (Oscarson et al., 1983; 

Frank and Clifford, 1986; Lauf and Waer, 1993). Recently, the US EPA has reported that 

chlorine, potassium permanganate, and ozone are useful oxidants for oxidizing As(III) to 

As(V); however, use of chlorine as a disinfectant should be restricted as it results in the 
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production of unwanted by-products and membrane fouling in some water treatment facilities 

using various processes such as reverse osmosis (Clifford, 2003; US EPA, 2001b). 

Equations (1), (2), and (3) describe the oxidation reactions for some of the most commonly 

used oxidizing agents for the oxidation of As(III) to As(V). 

Pierce and Moore (1982) stated that oxidation of arsenite to arsenate takes weeks in 

basic solution before considerable air oxidation occurs. 

2.5 HEALTH EFFECTS 

In general, organic metal compounds such as tin, mercury, and lead (simple 

methylated species) tend to be more harmful than the respective inorganic species. However, 

inorganic arsenic compounds are known to be 100 times more toxic than organic arsenic 

compounds (Ferguson and Gavis, 1972; Prange and Jantzen, 1995). It is said that the toxic 

level of variable arsenic species is in the following order: arsenite > arsenate > 

monomethylarsenate (MMA) > dimethylarsenate (DMA) (Penrose, 1974; Stugeron et al., 

1989). 

Arsenic toxicity is of two types, acute and subacute. The main sources of acute 

arsenic poisoning are contaminated food or drink. The symptoms of acute arsenic poisoning 

include burning sensation and dryness of mouth and throat, muscular cramps, projectile 

vomiting, and diarrhea (Done and Peart, 1971). The symptoms of subacute arsenic poisoning 

mainly link to cardiovascular, pulmonary, immunological, and neurological effects. Long-

term exposure causes loss of hair, brittle nails, and darkened skin exfoliation (Holmquist, 

1951; Pinto and McGill, 1953). Specifically, long-term exposure to arsenic-contaminated 

water causes various diseases such as cardiovascular diseases and conjunctivitis. In addition, 

2H3As03 + 02 O 2H2As04 + 2H+ 

H3As03 + HCIO O HAsOv + CI + 3H+ 

3H3As03 + 2KMn04 <%> 3HAs04"3 + 2Mn02 + 2K+ + 4H+ + H20 

(1) 

(2) 

(3) 
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many researchers revealed the relationship of arsenic to cancers of the bladder, lungs, kidney, 

nasal passages, liver, and prostate, as well as to skin cancer and Blackfoot disease according 

to several researchers' reports (Tseng et al., 1968; Wu et al., 1989; Chen et al., 1992; Smith 

et al., 1992). In addition, Csanady and Straub (1995) reported that high concentrations of 

arsenic in drinking water lead to an increase in stillbirths and spontaneous abortions. 

Figures 2.5 and 2.6 show symptoms of gangrene and actinic keratosis. In gangrene, 

tissues in a specific part of the body die due to infection. The infection can be due to injury 

and subsequent contamination with bacteria, or lack of blood flow. An actinic keratosis 

(AK), also known as a solar keratosis, is a scaly or crusty bump that arises on the skin surface. 

AK can eventually grow into skin cancer (Willson and DCH, 2004). 

Figure 2.5. Gangrene (Worldbank, 2005) 
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Figure 2.6. Keratosis sole (Willson and DCH, 2004) 

2.6 ARSENIC STANDARDS 

Since 1958, the World Health Organization (WHO) has been the primary authority in 

settling the international standards (allowable concentrations) for arsenic in drinking water. 

According to the last edition (1993) of the WHO guidelines for Drinking Water Quality, the 

guideline value for arsenic in drinking water is less than 10 p,g/L (WHO, 2001). The new 

suggested guideline value was based on expanding awareness of the toxicity of arsenic, 

mainly its carcinogenicity; developing technology; and the use of advanced instruments that 

can measure the amount arsenic more accurately. In the United States, the current standard 

for arsenic in drinking water is 50 ppb (ppb = |ig/L). To protect consumers against the 

effects of long-term, chronic exposure to arsenic in drinking water, the US EPA announced a 

new arsenic standard for drinking water of 10 jxg/L that will be effective from January 23, 

2006 (US EPA, 2001a). 
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2.7 ANALYTICAL METHODS FOR ARSENIC 

In the past few decades, developing the technology for detecting arsenic in drinking 

water has become increasingly important due to the toxicity of arsenic. A variety of 

instrumental techniques including atomic absorption spectrometry (AAS), atomic 

fluorescence spectrometry (AFS), inductively coupled plasma-atomic emission spectrometry 

(ICP-AES), and inductively coupled plasma-mass spectrometry (ICP-MS) are currently being 

used for the determination of arsenic in drinking water (Jain and Ali, 2000). The US EPA 

currently accepts six methods for the analysis of arsenic in drinking water, which including 

ICP-MS; graphite furnace atomic absorption (GFAA); stabilized temperature platform 

graphite furnace atomic absorption (STPGFAA); electrothermal atomic absorption 

spectrometry (EAAS); manual hydride generation atomic absorption spectrometry; and 

hydride generation atomic absorption (GHAA) (US EPA, 2003). 

Inductively coupled plasma-mass spectrometry (ICP-MS) is a very powerful tool for 

tracing extremely small amounts of elements. Nowadays, this technique is in high demand 

for analysis of toxic elements owing to its precision and accuracy in measurement. In ICP-

MS, argon gas produces a plasma or gas consisting of ions, electrons, and neutral particles. 

The elements in a sample are atomized and ionized by the plasma, and then these ionized 

elements are passed through a series of apertures (cones) into the high vacuum mass analyzer. 

The isotopes of the elements are acknowledged by their mass-to-charge ratio (m/e), and the 

intensity of a specific peak in the mass spectrum is comparable to the amount of that isotope 

(element) in the original sample (Houk, 1986; APHA, 1999). ICP-MS can achieve the 

arsenic detection limit of less than 0.1 jag/L recommended by the US EPA. ICP-MS has 

many other advantages, which include a short analysis time, lower detection limits, and 

multianalyte capabilities. However, instrumentation is expensive and the analysis for arsenic 

is subject to interference from the formation of an argon chloride in high chloride water 

samples (US EPA, 1994). 
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Graphite furnace atomic absorption (GFAA) is another of the most broadly used 

methods for measuring arsenic as it has high sensitivity and low detection limits. In GFAA, 

in order to detect the concentrations of a specific metal in a sample, the sample is heated very 

rapidly through the coated graphite tube up to 3000°C and atomized. The atomic adsorption 

lamp for the metal emits its characteristic atomic line spectra, and the instrument's 

monochromator selects one of those wavelengths. The amount of light absorbed by the 

atomized sample is proportional to its concentration in solution. GFAA needs very small 

amounts of sample, approximately 20 |iL, but it takes a long time for multianalyte detection 

(Aggett and Boyes, 1989; Howard and Comber, 1992; Beaty and Kerber, 1993). 

Stabilized temperature platform graphite furnace atomic absorption (STPGFAA) is 

GFAA with an attached stabilized temperature platform to delay atomization until stable 

temperature conditions are achieved. STPGFAA, which was approved by the US EPA in 

1994, is used in depositing multiplication and can measure down to 0.1 |ig/L of arsenic 

(Beaty and Kerber, 1993; US EPA, 2003). 

Electrical atomic absorption spectrometric method (EAAS) is based on the same 

theory as direct flame atomization except that an electrically heated atomizer or graphite 

furnace replaces the standard burner head. EAAS has better sensitivity and detection limits 

(20 to 1000 times) than those of conventional flame techniques without extraction or sample 

concentration. EAAS requires only very small volumes of sample (APHA, 1999). 

The manual hydride generation atomic absorption spectrometry (manual GHAA) has 

a principle similar to that of atomic absorption spectrometry; however, manual GHAA is a 

better method than AAS for analyzing arsenic with interferences that cannot be overcome by 

standard electrothermal techniques. In manual GHAA, the interferences are minimized 

because the arsenic hydrides are removed from the solution by sodium borohydride reagent 

and transported to an atomic absorption atomizer. This method has a lower detection limit 

of 0.5 |ig/L, but, the analysis time is longer due to multiple injections (APHA, 1999). 
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The continuous-flow automated hydride generation atomic absorption (automated 

GHAA) is preferable to manual hydride generators because the effect of sudden hydrogen 

generation on light-path transparency is removed. Also, any blank response from 

contamination of the HC1 reagent by the elements of concern is incorporated into the 

background base line (APHA, 1999). 

2.8 THE METHODS OF ARSENIC REMOVAL 

Various common treatment technologies have been used for removal of inorganic 

arsenic from drinking water. Large-scale treatment facilities often use conventional 

coagulation and precipitation with alum or iron salts and filtration to remove arsenic (Hering 

et al., 1996; Edwards, 1994; Chen et al., 2002). Lime softening is another conventional 

treatment process that potentially removes arsenic from source waters. Smaller scale systems 

and point of entry systems often use anion exchange resins, reverse osmosis, or activated 

alumina (Clifford, 1990; Lee et al., 2003). The new MCL of 10 ppb for arsenic publicized by 

the US EPA has led researchers to improve newer treatment techniques for more effective 

arsenic removal from drinking water. The US EPA suggested the criteria for the best 

available technology (BAT) are as follows: (1) the capability of achieving a high removal 

efficiency, (2) a history of full-scale operation, (3) general geographic applicability, (4) 

reasonable cost based on large and metropolitan water systems, (5) reasonable service life, 

(6) compatibility with other water treatment processes, and (7) the ability to bring all of the 

water in a system into compliance (US EPA, 2001b). 

After evaluating previous As removal techniques from drinking water with BAT 

criteria, the US EPA recommended ion exchange, activated alumina, reverse osmosis, 

modified coagulation/filtration, modified lime softening, electrodialysis reversal, and 

oxidation/filtration as best available technologies to achieve 80-95 % arsenate [As(V)] 

removal efficiency after oxidation of As(III) to As(V) prior to removal (US EPA, 2000). The 
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US EPA is also evaluating other technologies such as coagulation-assisted microfiltration 

and granular ferric hydroxide, not yet designated as BAT, as adsorption absorbents. 

Table 2.2. Best available technologies (BAT) and removal rates (US EPA, 2000) 

Treatment technology Max. As(V) 
removal (%) 

Limitation 

Ion Exchange 95 Sulfate < 50 mg/L 

Adsorption (Activated Alumina) 95 pH sensitive, low regeneration rate 

Reverse Osmosis >95  Low water recovery rate, high cost 

Modified Coagulation/Filtration 95 pH < 7, high dosage required 

Modified Lime Softening 90 pH > 10.5 

Electrodialysis Reversal 85 Low water recovery rate, high cost 

Oxidation/Filtration 80 20:1= iron: arsenic 

Ion exchange, especially using anion exchange resins, is suggested at lower sulfate 

concentrations for removing arsenate (US EPA, 2000). Anion exchange resins must be 

regenerated frequently due to shorter run lengths caused by sulfate. Frequent column bed 

regeneration leads to increasing costs and volumes of waste produced by the process. 

Although Clifford and Zhang (1994) noted that anion exchange may be operated for as high 

as 120 mg/L of sulfate, the US EPA suggested 50 mg/L as an appropriate upper limit for 

sulfate concentration in anion exchange for removing arsenic. 

Reverse osmosis (RO) is a well-known process for small water treatment systems to 

remove arsenic from water and to achieve the new arsenic standard. RO membranes have 

extremely small pores (< 0.001 fxm). The solvent is passed through these pores and the free 

volume between the segments of the polymer of which the membrane consists. In the RO 
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system, osmotic pressure across the membrane is higher than in other membrane processes 

(Shih, 2005). Reverse osmosis was reported to provide greater than 95% removal efficiency 

in ideal operation conditions, but it may not be suitable in water-scarce regions because of 

low water recovery rates (75-85%) and high cost (Chen et al., 1999). 

McNeill and Edwards (1995) reported that modified coagulation/filtration is a cost-

effective arsenic treatment process. In general, the system needs to be at a pH lower than 7 

or requires larger amount of coagulant to achieve higher removals. For example, modified 

lime softening, which is regarded as one of the better processes for As removal, needs to be 

operated at a pH of greater than 10.5 to achieve a high percentage of As removal (Chen et al., 

2002). 

Electrodialysis is another type of membrane process. The membranes separating the 

electrodialysis unit consist of cation and anion ion exchange resins. In electrodialysis, an 

electric current attracts the ions (dissolved solids) through the membranes, leaving the 

"fresh" water behind. The concentration of dissolved solids on the other side of the 

membrane (not the "fresh" water side) increases. The cations (e.g., calcium and magnesium) 

are drawn to a negatively charged electrode, and the anions (e.g., sulfate and arsenic) are 

attracted to a positively charged electrode (Kartinen and Martin, 1995). 

Electrodialysis reversal (EDR), generally a fully automated system, has many 

advantages; for example, no addition of chemicals and little operator attention are required. 

However, it is typically expensive and has a lower water recovery of 70-80%. Additionally, 

oxidation/filtration is particularly effective for waters containing lower concentrations of 

arsenic and higher concentrations of iron (Subramanian et al., 1997). 

Adsorption is a separation or purification process in which organic or inorganic 

compounds are adsorbed onto porous solid media with large surface areas for removal from 

the solution (Do, 1998). Adsorption easily separates a small amount of toxic elements from 

large volumes of solutions. For the removal of arsenic, the US EPA recently approved 
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adsorption using activated alumina (AA) as one of the best available technologies (BAT). 

AA used for removal of contaminants by adsorption is nonhazardous and could safely be 

disposed of in landfills. However, AA is very pH sensitive and needs regeneration. In 

addition, it has a low regeneration rate of 50-70% (US EPA, 2001a). It is therefore 

necessary to develop new adsorbents that are more effective in removing arsenate in drinking 

water. 

2.9 ADSORPTION THEORY 

Before studying the adsorption of arsenic using iron- and aluminum-based adsorbents 

from drinking water, it is necessary to review the adsorption theory briefly. 

Adsorption phenomena have been known for a very long time. Adsorption can be 

utilized as a treatment process to remove highly undesirable compounds from feedwater. It 

involves the separation of undesirable compounds from the liquid phase, the binding of 

components to a surface, and their accumulation at the surface of the adsorptive media. The 

binding to the surface is usually weak and reversible. Adsorption is distinguished from 

absorption, which is the filling of pores in a solid. Chemical adsorption (chemisorption) and 

physical adsorption (physisorption) are the two broad classifications of adsorption. In 

chemisorption, formation of strong bonds between adsorbate molecules and specific surface 

locations, also known as active sites, take place. Thus, chemisorption is primarily used to 

evaluate quantitatively the number of surface active sites, which participate in promoting 

(catalyze) chemical reactions. Van der Waal s forces and electrostatic forces between 

adsorbate molecules and the atoms that compose the adsorbent surface result in physical 

adsorption. Thus, surface properties such as surface area and polarity play a significant role 

in adsorbent characterization. The problem of distinguishing between chemisorption and 

physisorption is basically the same as that of distinguishing between chemical and physical 
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interactions in general. An absolutely sharp distinction is rare, and intermediate cases (e.g., 

adsorption involving strong hydrogen bonds or weak charge transfer) exist. 

The major factors affecting adsorption are the nature and concentration of the 

adsorbate, the temperature and pH of the solution, the presence of competing solutes, and 

properties of the adsorbents such as surface area and pore size. A porous solid adsorbent is 

very significant in the adsorption process. Adsorbents can be classified, based on their 

porosity, as nonporous or porous adsorbents. Nonporous adsorbents have relatively small 

external adsorptive surface areas; such adsorbents include glass, steel beads, and clay. 

Porous adsorbents have relatively large internal adsorptive surface areas. Particularly, some 

of the important adsorbent characteristics affecting isotherms are surface area, pore size 

distribution, and surface chemistry. For nonporous adsorbents, the maximum amount of 

adsorption is proportional to the amount of surface area that is accessible to the adsorbate. 

However, the surface area of porous adsorbents is not the chief influence on adsorption 

capacity (Lin and Wu, 2001; APHA, 1999). 

Adsorption separation is based on three distinct mechanisms: steric, equilibrium, and 

kinetic mechanisms (Do, 1998; Lee et al., 2004). 

Thermodynamic adsorption is associated with the steric mechanism, specifically 

isosteric heat emitted during adsorption of a specific quantity of adsorbate. In liquid-phase 

adsorption systems, adsorption of solute molecules is generally accompanied by the 

desorption of water molecules, and therefore relatively low amounts of steric heat are 

evolved in such cases. For adsorption equilibria that follow a Langmuirian pattern, the 

isosteric heat of adsorption is constant because of the implied energetic homogeneity of the 

adsorbing surface. Therefore, the equilibria isotherm and the kinetic mechanism are more 

important for liquid-phase adsorption systems. 
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The two main characterizations of any adsorption process are adsorption equilibria 

(i.e. adsorption isotherms) and the rate of adsorption (i.e. adsorption kinetics). These two 

aspects will be discussed further below. 

2.9.1 Adsorption Isotherms (Adsorption Equilibria) 

The adsorption equilibrium for any particular adsorbent-adsorbate system can be 

called an adsorption isotherm because an isotherm is the distribution of solute between the 

liquid phase and the adsorbed phase at a specified temperature. 

The adsorption phenomena can be described based on any one of the several 

adsorption isotherms, including Freundlich, Langmuir, Brunauer, Emmet and Teller (BET), 

Dubinin and Raduskevich (D-R), and Polanyi. The appropriate model for a particular 

component depends on the characteristics of the system. The energetic heterogeneity or 

uniformity of the adsorptive surfaces is an important factor in finding a suitable model for a 

particular adsorbate. 

For single-solute adsorption, the Freundlich and the Langmuir are the more common 

isotherm models (LeVan, 1996; Snoeyink and Summers, 1999). The following well-known 

empirical and practical Freundlich equation explains adsorption data reasonably well: 

(4) 
The linear form is as follows: 

log qe 
= log + — log Ce (5) 

n 

where qe (units mass of adsorbate/mass of adsorbent) and Ce (units of mass/volume) are 

equilibrium surface and solution concentrations, respectively. K and 1/n are constants for a 

given system; 1/n is unitless, and the units of K are determined by the units of qe and Ce. K 

states the capacity of the adsorbent for the adsorbate and 1/n is a function of the strength of 

adsorption. For fixed values of Ce and 1/n, the larger the value of K, the larger the capacity 

qe. For fixed values of K and Ce, the smaller the value of 1/n, the stronger the adsorption 



www.manaraa.com

21 

bond. As 1/n becomes very small, the capacity tends to be independent of Ce, and the 

isotherm plot approaches the horizontal level; the value of qe is then basically constant, and 

the isotherm is termed irreversible. If the value of 1/n is large, the adsorption bond is weak, 

and the value of the qe changes obviously with small changes in Ce. 

The Freundlich isotherm is based on the assumption that the adsorbent has a 

heterogeneous surface composed of different classes of adsorption sites. The Langmuir 

equation can be linearized as shown below. 

m - = —!tf + — («) 
1 + 6c, 9, ^ 

where b and qmax are constants. qmax represents the maximum value of qe that can be 

achieved as Ce is increased. The constant qmax corresponds to the surface concentration at 

monolayer coverage. The constant b is related to the energy of adsorption and increases with 

the increase in adsorption bond strength. The basic assumption of the Langmuir isotherm is 

that adsorption of solutes occurs at specific homogeneous sites and forms a monolayer. 

2.9.2 Kinetic Mechanisms 

The rate of sorption is one of the most important factors in evaluating the efficiency 

of sorption and in determining the size of water treatment unit processes. In order to estimate 

the rates of adsorption and to identify the behavior of the adsorptive, the pseudo first-order 

Lagergren equation and the pseudo-second order equation are widely used (Ho and McKay, 

1998a; b). A simple kinetic analysis of adsorption is the pseudo first-order equation in the 

form. 

=  * , ( « , - « , )  ( ? )  

at 

where k\ (1/min) is the rate constant of pseudo first-order adsorption, qc (mg/g of dry weight) 

is the amount of metal ion sorbed at equilibrium, and qt (mg/g of dry weight) is the amount of 
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metal ion on the surface of the sorbent at any time t (min). By applying the boundary 

condition qt = 0 at t= 0, equation (4) becomes 

log(9, - ) = log (8) 

Instead of the pseudo first-order Lagergren equation, a pseudo second-order equation 

was recently described to explain the adsorption kinetics. The pseudo second-order equation 

is as follows. 

'  1  
+ -L,  (9)  

9, y, 

where k.2 is the rate constant of adsorption (g/mg min) and h is the initial sorption rate (mg/g 

min). As time approaches zero (t —» o), h can be defined as 

h = k2qe
2 (10) 

The initial sorption rate (h), the equilibrium sorption capacity (qe), and the pseudo second-

order rate constant (&?) can be determined experimentally from the slope and intercept of the 

plot of t/q versus t. 

To explain the diffusion state of adsorbate on adsorbent, the rate constant for 

intraparticle diffusion (ku/) is given by Weber and Morris (Kim et al., 2004; Namasivayam 

and Ranganathan, 1995; Peak and Sparks, 2002; Sun and Yang, 2003). The equation is as 

follows: 

9  =  ( i d  

The steep linear portions generally represent intraparticle diffusion within pores of 

adsorbent, while the plateaus are attributed to the equilibrium. 

2.10 ADSORPTION OF ARSENIC USING VARIOUS IRON- AND ALUMINUM-
BASED ADSORBENTS 

Adsorption of arsenic(As) using metal oxides has been reported as an effective 

arsenic removal technology in drinking water because of its advantages: comparatively low 

cost, reliable arsenic removal efficiency, and simplicity of installation and maintenance. The 
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metal oxides generally described as absorbents are manganese green sand (Subramanian et 

al., 1997), activated alumina (Singh et al., 2001; Rosenblum and Clifford, 1983), granular 

ferric hydroxide (Thirunavukkarasu et al., 2003a;b), lanthanum oxide (Davis and Misra, 

1997), soil and clay minerals (Livesey and Huang, 1981; Altundogan et al., 2002; Goldberg, 

2002), titanium oxide (Abe et al., 1992), and zirconium hydroxide (Lee et al., 2004). 

However, iron- or aluminum-based adsorbents have been reported by several investigators to 

be especially effective for removing arsenic from drinking water. 

2.10.1 Iron (Fe) Based Adsorbents 

Several researchers have found that iron-based oxides adsorb arsenic compounds in 

drinking water to a significant extent. Pierce and Moore (1982) described the adsorption of 

arsenic by amorphous iron (Fe) hydroxide as varying as a function of pH and concentration, 

and obeyed a Langmuir isotherm at low concentrations of arsenic. Hsia et al. (1992) reported 

that the adsorption of As(V) by amorphous ferric oxide was observed to vary as functions of 

pH (4-10) and initial As(V) and Fe(III) concentrations. They used the triple-layer model to 

simulate As(V) adsorption on the Fe oxide surface and showed that the surface complexes of 

Fe(H,AsO4)^, Fe(HAs04)", and Fe(As04)2" with an inner sphere of amorphous ferric oxide 

are more consistent with experimental adsorption data. 

Dzombak and Morrel (1990) invoked the surface complexation modeling to explain 

the adsorption of cations on hydrous ferric oxide (HFO). Several researchers have presented 

this concept as a theory for adsorption of arsenic in water. To explain the factors affecting 

arsenic adsorption, Wilkie and Hering (1996) compared the extent of arsenic adsorption on 

HFO in the range of pH 4 to 9 with the result calculated by the generalized two-layer model, 

a surface complexation model in which the columbic term is fixed by double-layer theory. 

To explain the effect of adsorbate/adsorbent ratios on arsenic adsorption using HFO, they 

introduced the concept of surface heterogeneity, which is common in modeling transition 
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metal cation adsorption. They also showed that high concentrations of sulfate decreased the 

removal of As(V) and that the effect of sulfate was greatest at lower pH. They further 

reported that calcium ions had a cooperative effects on adsorption of As(V) at high pH due to 

its favorable electrostatic behavior. 

Safiullah et al. (2004) tested hydrated ferric oxide (HFO), activated A1203 (AA), and 

acidified or HFO-coated activated AI2O3 for the removal of arsenic, and concluded that HFO-

based materials were better adsorbents than activated AI2O3 for the removal of arsenic from 

water and were environmentally more acceptable in terms of desorption behavior. Meng et 

al. (2002) discovered that the combined effects of phosphate and silicate can significantly 

affect the removal of arsenic by iron hydroxides. Meng et al. (2000) showed that using the 

triple-layer model (TLM), the removal of As(V) by coprecipitation and adsorption with ferric 

chloride was moderately affected in the presence of silicate, and that up to 300 g/L of sulfate 

concentration had no apparent effect on the removal of As(V) with ferric chloride at a pH 6.8 

because sulfate binding affinity for ferric hydroxide maybe much weaker than that of As(V). 

Manning and Goldberg (1996a; b) reported that the adsorption of arsenate on goethite 

[a-FeOOH] was affected by pH and competing anions such as phosphate and molybdenum, 

and that the competitive adsorption of these solutes with arsenic was observed in binary 

adsorption envelopes, which is embodies the concept of the one-site (monodentate) and two-

site (monodentate + bidentate) oxide surface. Waltham and Eick (2002) reported that in the 

presence of silicic acid (HiSiO;), the adsorption of arsenate on goethite decreased as 

compared with that of arsenite. They explained this as possibly due to a decrease in the 

goethite's surface potential upon specific adsorption of silicic acid and deprotonation of the 

arsenate, creating an unfavorable electrostatic field. 

Ferrihydrite, a kind of iron oxide with poorly crystallized oxides, plays a significant 

role in controlling arsenic concentrations and in the mobility of arsenic. Jain et al. (1999) 

indicated the bonding mechanism of arsenic on the surface of ferrihydrite to explain arsenic 
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adsorption on ferrihydrite: during arsenite adsorption at lower pH, the oxygen of the Fe-O-As 

bond remains partially protonated as Fe-0(H)-As, while during arsenate adsorption at a pH 

of more than 8, monodentate bonds play a significant role. Jain and Loeppert (2000) found 

that the presence of phosphate resulted in a severe reduction in arsenate adsorption by 

ferrihydrite. Chaudhury et al. (2003) tried to incorporate manganese oxide into the 

ferrihydrite structure to improve adsorption capacity and increase the rate of adsorption. 

Granular ferric hydroxide, which has a large specific surface area (approximately 150 

m2/g), has been described by some investigators as a good adsorbent for removing arsenic in 

drinking water. Recently, the US EPA is testing granular ferric hydroxide as an appropriate 

arsenic absorbent of BAT. Driehaus et al. (1998; 2002) described the adsorption using GFH 

for the removal of arsenic as simple and effective, particularly for small water facilities, due 

to its high adsorption capacity and short contact time in model systems and natural waters. 

Thirunavukkarasu et al. (2003a) tested GFH as an arsenic adsorbent in drinking water with 

an arsenic concentration of 100 ;xg/L of at a pH of 7.6, a typical pH value in drinking water 

supplies. They found that the observed data of arsenic adsorption fitted well in the 

Freundlich and Langmuir models, and they suggested that GFH could be effectively applied 

to small water utilities because it can achieve As(V) levels of less than 5 ^g/L of in drinking 

water. Chang et al. (2003) reported that of three adsorbents (iron-modified activated alumina, 

high porosity activated alumina, and GFH) used to remove arsenic from Southern California 

Water Company (SCWC) wells, GFH was the better adsorbent. Lee et al. (2004) discovered 

that 35.5 mg/L of silica and 13 ^g/L of vanadium (V) in groundwater had an unfavorable 

impact on As(V) adsorption using GFH because competing solutes reduced media surface 

sites available for arsenic. 

Yuan et al. (2002) evaluated several iron-treated natural materials, such as Fe-treated 

activated carbon (FeAC), Fe-treated gel beads (FeGB), and iron oxide-coated sand (IOCS), 

for removing arsenic in drinking water for household use (cooking and drinking) and showed 
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that IOCS had a good performance in terms of As(III) and As(V) removal in batch tests, 

column tests, and field experiments. They also reported that As(V) adsorption decreased 

slightly with increasing pH and that the observed adsorption data followed the Langmuir 

isotherm model quite well. To regenerate the columns of IOCS, 0.2 N NaOH was used. For 

application to simple and affordable household type of arsenic removal instruments, iron-

coated sand (ICS) and iron-impregnated granular activated carbon (IGAC) were tested, and 

similar results were obtained. The results showed that the arsenic adsorption capacities 

decreased at high pH values (Petrusevski et al., 2002). Thirunavukkarasu et al. (2003b) 

developed iron oxide-coated sand (IOCS) through a high temperature coating process to 

increase its effectiveness and suitability for batch and column tests. Also, they reported that 

the fixed bed column of IOCS showed good performance for the removal of arsenic from tap 

water at pH 7.6, that the observed data fitted the Langmuir isotherm, and that the As(V) 

adsorption capacity of IOCS was 42.6 mg As/g IOCS. 

Yean et al. (2005) evaluated the sorption and desorption behaviors of arsenic to 

magnetite (Fe304) nanoparticles, and they found that the sorption capacity is dependent on 

the pH value and surface area of the adsorbent. They also reported that the observed 

adsorption data followed the Langmuir isotherm and that nanoparticle-sized magnetite had a 

stronger desorption hysteresis for arsenic sorption than did larger particles. The presence of 

natural organic matter (NOM) decreased arsenic sorption to magnetite nanoparticles. Zeng 

(2004) also found that sulfate concentration of less than 460 mg/L produced little 

interference with As(V) adsorption when using an iron (III) oxide-silica binary oxide 

adsorbent. 

2.10.2 Aluminum (Al) Based Adsorbents 

Aluminum-based adsorbents are also well known to significantly adsorb arsenic 

species in drinking water. Anderson et al. (1976) studied arsenate absorption on amorphous 
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Al hydroxide and measured the adsorption and electrophoretic mobility of adsorbent particles 

as a function of equilibrium pH. 

Adsorption on activated alumina (AA) has been one of the most commonly used 

methods for As(V) removal from drinking water. Activated alumina, with a high surface 

area of approximately 370 m2/g, is recognized as an appropriate adsorbent for the removal of 

arsenate by the US EPA. Gupta and Chen (1978) studied the adsorption of As(V) and As(III) 

using activated alumina at various pH values and salinities, and they found that arsenic 

removal can be best accomplished in the As(V) state. Rosenblum and Clifford (1983) also 

found that arsenic (V) was effectively removed from water onto activated ALO3. Singh et al. 

(2001) reported that activated AI2O3 can remove more than 90% of As(V), depending on pH, 

initial arsenic concentration, and dose of adsorbent, and it can be an effective adsorbent for 

the removal of As(V) from water at pH 5-7. Shugi et al. (2003) tried to coat activated 

alumina with iron oxide to increase the adsorption of As(III). They found that the adsorption 

process followed the first-order kinetics, and the adsorption isotherms fitted both Langmuir 

and Freundlich equations well. They also observed that the equilibrium time of arsenic 

adsorption was independent of initial arsenic concentration, but percentage removal 

decreased with increasing initial concentration. Lin and Wu (2001) studied the equilibrium 

and kinetic adsorption of arsenic onto activated alumina using a pore diffusion model, 

coupled with the observed Freundlich or Langmuir isotherm equations, and they found that 

the model fitted the experimental data well. They calculated pore diffusion coefficients. To 

find an ideal adsorbent having uniformly accessible pores, an interlinked pore system, a high 

surface area, and physical and/or chemical stability, Kim et al. (2004) developed mesoporous 

alumina by a templating method. This method produces a spongelike interlinked pore system 

through a posthydrolysis method, using stearic acid as an anionic surfactant and aluminum 

sec-butoxide (Fluka) as the aluminum precursor. They reported that the mesoporous alumina 

was insoluble and stable within the range of pH 3 to 7, had seven times higher maximum 
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uptake of As(V) than that of conventional AA, and had rapid adsorption kinetics (5 hours) 

compared with the conventional AA (2 days). To desorb the adsorbate from the mesoporous 

alumina, a sodium hydroxide solution was used. They also found that the most significant 

key factor affecting adsorption capacity wase not the surface area of the adsorbents: the key 

factors were a uniform pore size and an interlinked pore system. Goldberg (2002) stated that 

the adsorption of As(V) on alumina decreased with high concentrations of sulfate. 

David and Misra (1997) developed and tested several mixtures of lanthanum oxide 

and activated alumina for adsorbing selenium (IV) and arsenic (V) as a function of time and 

pH, and they showed that selenium (IV) was a competing solute in the adsorption of Se(FV) 

and As(V) onto aluminum-based adsorbents. 

Manning and Goldberg (1996b) studied the effects of pH and competing anions on 

the adsorption of arsenate [As(V)] on gibbsite [y-Al(OH)3]. They found that the presence of 

phosphate resulted in a severe reduction in arsenate adsorption on gibbsite; they also 

described the binary adsorption envelopes for competitive adsorption of these solutes with 

arsenic. In addition, Manning and Goldberg (1996a) tested the arsenic adsorption using 

kaolinite, montmorillonite, and illite at varying pH and competing anion concentrations. To 

explain As(V) adsorption on these three clay minerals at varying pH and in the presence of 

competing oxyanions, specifically, phosphate anions, the surface complexation model was 

indicated. 

Xu et al. (1998) developed the aluminum-loaded Shirasu-zeolite (A1-SZP1) by 

treating a PI type Shirasu-zeolite (SZP1) with an aluminum surface solution. Xu et al. 

(2002) found that this adsorbent was better than activated alumina and other aluminum-

loaded zeolites in terms of adsorption ability for As(V), and they demonstrated that the 

As(V) adsorption process using aluminum-loaded zeolites followed the first-order kinetic 

equation and the Freundlich isotherm. Phosphate anions significantly affected the arsenate 

adsorption on this adsorbent. The suggested adsorption mechanism was a ligand-exchange 
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process between As(V) and the hydroxide groups present on the surface of A1-SZP1. In 

addition, NaOH solutions were used to desorb As(V) that had been adsorbed on A1-SZP1. 

It can generally be concluded that the adsorption of As(V) using iron- and aluminum-

based adsorbents is dependent on the pH value, adsorbate concentration, and amount of 

adsorbent. Specifically, the arsenate adsorption on these adsorbents increases at a pH value 

of less than 7 due to a decrease in the formation of complexes of arsenate with the surface of 

these adsorbents. The formation of complexes can be illustrated at lower pH by the 

following reactions: 

= Fe - OH + H2 ASO4 +H -*Fe-H2As04 +H20 : pH 2-7 

= Fe — OH + H3As03 —> Fe — H2 As03 + H O : pH £ 2 

where = Fe - OH is a hydroxide surface site. The observed adsorption data followed 

Langmuir or Freundlich isotherms and obeyed first-order kinetic equation. Phosphate anions 

are the most important solute competing with arsenate adsorption on iron- and aluminum-

based adsorbents in water. Other competing solutes are sulfate, nitrate, and silicate. 

Additionally, the adsorption of As(V) onto iron-based adsorbents was found to be more 

efficient than that on aluminum based adsorbents. 

2.10.3 Needs of New Fe- or Al-Based Adsorbents 

The literature, as consulted, showed that iron- or aluminum-based adsorbents are 

good adsorbents for removing arsenic from water. However, previous studies of Fe- and Al-

based adsorbents have focused on adding chemicals to enhance adsorption capacity, (e.g., 

coatings and heat or acid treatment) and on reusing adsorbents to reduce cost after 

regeneration—usually with sodium hydroxide. The sodium hydroxide solution is frequently 

used as a desorption agent to recover expensive adsorbent media. However, pretreatment of 
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adsorbents or use of a desorption agent increases operating cost. The reality of the present 

situation is that the demand for effective and inexpensive adsorbents is constantly increasing. 

The use of pretreatment or desorption chemicals also results in pollution. Researchers are 

gradually realizing the importance of as nonregenerative adsorbent media in terms of 

economics and environmental impact. 

In addition, it was reported that the arsenic contamination of many small-scale water 

systems and individual ground wells is widespread in most endemic areas such as China, 

Bangladesh, and the western United States. In these areas, centralized water treatment and 

distribution facilities are unavailable for the removal of arsenic due to the difficulty and 

expense of installing and operating regeneration processes. Besides, these small water 

systems need different approaches to removing arsenic from water. Simple and affordable 

arsenic treatment systems at the household level should be suggested, and the development of 

new, cheap, and easy-to-manage adsorbents would be quite worthwhile. Therefore, iron and 

aluminum oxides can be effective adsorbents of As(V) for Point of Entry (POE) and Point of 

Use (POU) water treatment systems, such as small-scale commercial or individual home 

water treatment systems. 
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1. Abstract 

Iron (Fe203) and nonactivated aluminum oxide (A1203) were found to be good and 

inexpensive adsorbents for As(V) removal in drinking water despite their relatively small 

surface area. The experimental results for this study suggest that by careful selection of the 

relative concentration of arsenic, pH, and dosages of Fe203 and A1203, As(V) removal 

efficiency as high as 99% can be achieved. At lower pH (< 7), and also depending on the 

dosages of Fe203 and A1203 and the initial concentration of As(V), over 95% of As(V) 

adsorption was observed within a contact time of 20 to 60 minutes. The adsorption of As(V) 

on Fe203 and A1203, like that on other nonporous adsorbents, is mainly controlled by the 

surface area. The adsorption of As(V) on Fe?03 and A1203 was found to follow the 

Langmuir isotherm between the pH values of 5 and 9. The maximum As(V) uptake values 

mailto:leeuwen@iastate.edu
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at pH 6 - the optimal pH value for adsorption - using FeoO; and AI2O3, were calculated as 

0.66 mg/g and 0.17 mg/g, respectively. No significant variation in the uptake of As(V) on 

Fe2C>3 as compared with AI2O3 was observed at different pH values. The initial sorption rate 

of FeiCb is higher than that of AI2O3. All these factors make FeaC^ a better adsorbent than 

AI2O3. Fe203 is a useful and effective adsorbent for POE (pint of entry) and POU (point of 

use) water treatment systems, such as small-scale commercial or individual home water 

treatment systems. Even though the adsorption capacities of Fe203 and AI2O3 for As(V) are 

quite low compared with those of other absorbents, their low cost makes them useful 

adsorbents. They may be very useful in arsenic removal from water in endemic areas such as 

China, India, and Bangladesh. 

Keywords: Adsorption; Arsenic; As(V); Iron oxide; Aluminum oxide 

2. Introduction 

Arsenic is one of the most common natural contaminants found in water that has adverse 

effects on human health. Arsenic mainly originates from arsenic-containing rocks and soil 

and from some anthropogenic sources including mining, glass processing, insecticides, 

pesticides, and landfill leaching (Nordstrom and Alpers, 1999; US EPA, 1999). It is 

transported into natural waters through erosion and dissolution. It occurs in natural waters in 

both inorganic and organic forms, such as monomethyl arsenic acid (MMAA), dimethyl 

arsenic acid (DMAA), and arseno-sugars (NAS, 2001). The inorganic form of arsenic is 

most toxic to humans. Inorganic arsenic usually occurs in two valence states, arsenite 

[As(III)] and arsenate [As(V)]. In natural waters, As(III) species primarily consist of 
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arsenious acid (H3ASO3), while As(V) species consists of H2ASO3" and HASO32" (Ferguson 

and Gavis, 1972). The previous research has shown that As(V) in aerobic surface water has 

better removal efficiency than As(III) in anaerobic groundwater (Penrose, 1974). Besides, 

As(III) is easily converted to As(V) by oxidizing agents such as oxygen, ozone, free chlorine, 

hypochlorite, permanganate, and hydrogen peroxide (Frank and Clifford, 1986; Oscarson et 

al., 1983; Lauf and Waer, 1993). Thus, it is convenient to consider only As(V) compounds 

to be removed in drinking water treatment. 

Long-term exposure to inorganic arsenic such as arsenite [As(III)] and arsenate [As(V)] 

in drinking water leads to adverse health effects such as cancer of the bladder, lungs, skin, 

kidney, nasal passages, liver, and prostate (Chen et al., 1992; Wu et al., 1989; Smith, et al., 

1992). These adverse health effects of arsenic have mainly been reported in third world 

countries such as Bangladesh, India, Chile, and China, but a few incidences have been found 

even in affluent nations like the United States (Murphy and Guo, 2003; US EPA, 2000; 

Mazumder et al., 2000; Smith et al., 2000). 

Based on the above-discussed adverse health effects of arsenic, changes in WHO's 

arsenic standard for drinking water (WHO, 2001), and the need to protect citizens against the 

effects of long-term, chronic exposure to arsenic in drinking water, the US Environmental 

Protection Agency (US EPA) has revised the current maximum contaminants level (MCL) of 

0.05 mg/L (50 ppb) for arsenic in drinking water to 0.01 mg/L (10 ppb), which will be 

effective from January 23, 2006 (US EPA, 2003). In addition, the USEPA suggests the 

criteria of the best available technology (BAT) for arsenic removal, that is, technology that 

provides high removal efficiency, has a history of full-scale operation and a reasonable 

service life, and is cost effective. The new MCL standard and BAT for arsenic have led 
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researchers to find new and improved treatment techniques for more effective removal of 

arsenic from drinking water (US EPA, 2001). 

Adsorption is a separation or purification process in which organic or inorganic 

compounds are adsorbed, for removal from the solution, onto porous solid media with a large 

surface area (Do, 1998). Adsorption has a comparatively low cost and easily separates a 

small amount of toxic elements from large volumes of solutions. These benefits of 

adsorption have motivated several researchers to use adsorption for arsenic removal from 

drinking water. Some of the common adsorbents used for the process include activated 

alumina, manganese green sand, granular ferric hydroxide, soil, and mud (Rosenblum and 

Clifford, 1983; Subramanian et al., 1997; Thirunavukkarasu et al., 2003; Livesey and Huang, 

1981; Altundogan et al., 2002). Adsorption by activated alumina (AA) was approved 

recently as one of the best available technologies (BAT) for arsenic removal. It has an 

advantage over other adsorbents in that AA used during the removal process is nonhazardous 

and could be safely disposed of in landfills. However, AA is very pH sensitive and has a low 

regeneration rate of 50-70% (US EPA, 2001). It is necessary to consider development of 

new adsorbent, one that is more effective in removing arsenate in drinking water. 

Several researchers have found that Fe- and Al-based adsorbents adsorb arsenic 

compounds in drinking water to a significant extent. Of these, amorphous ferric hydroxide 

(Pierce and Moore, 1982), ferric oxide (Dzombak and Morrel, 1990), hydrous ferric oxide 

(Wilkie and Hering, 1996), ferrihydrite (Jain et al., 1999), granular ferric hydroxide 

(Thirunavukkarasu et al., 2003), goethite and gibbsite (Manning and Goldberg, 1996), 

amorphous aluminum oxide (Anderson et al., 1976), activated alumina (Gupta and Chen, 

1978; Singh et al., 2001) are most frequently described. However, previous studies of Fe-
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and Al-based adsorbents have focused on adding chemicals for augmenting adsorption 

capacity (e.g., coating, heat, or acid treatment) and on reusing adsorbents to reduce cost after 

regeneration (usually with sodium hydroxide). Maeda et al. (1992) and Vaughan and Reed 

(2005) used Fe-impregnated coral and Fe-impregnated activated carbon to enhance arsenic 

removal. Altundogan et al. (2002) demonstrated that the acid treatment with 1 M HC1 

solution to red mud, which removes sodalite (Na?0-ALO;-1 .68Si02-1.73H20), increases the 

adsorption ability of red mud in industrial wastes treatment. A desorption agent (e.g., sodium 

hydroxide solution) is commonly used to recover expensive adsorbent media such as 

mesoporous alumina prepared by the templating method (Kim et al., 2004). However, 

pretreatment of the adsorbent or use of a desorption agent increases the operating cost. In 

addition, waste solution containing HC1 and NaOH discarded from pretreatment for boosting 

adsorption capacity also result in pollution. The development of new, inexpensive, and easy-

to-manage adsorbents would be quite worthwhile. 

Arsenate adsorption using Fe and A1 oxides without pretreatment or regeneration 

processes may offer a useful new technology, particularly in Point of Use (POU) or Point of 

Entry (POE) treatment units (such as household drinking water faucets). It would require no 

hazardous desorption agents, and offers easy maintenance of the adsorption system (MDE, 

2004). Additionally, iron and alum oxides are inexpensive chemicals and are readily 

available at water treatment plants, where they are sometimes used in other unit processes 

(Scott et al., 1995; McNeill and Edwards, 1997). 

In this research, we studied the adsorption of arsenate [As(V)] onto Fe203 and AI2O3. The 

objectives of this study were to evaluate the use of Fe203 and A1203 as possible adsorbents 

for the removal of arsenate from drinking water through a series of experiments conducted by 



www.manaraa.com

44 

changing various parameters such initial concentration, dosage of adsorbents, and pH that are 

known as critical parameters in other researches. 

3. Theoretical study 

3.1. Adsorption kinetic equation 

The pseudo second-order rate equation was developed by Ho (1995) to describe the 

adsorption systems of divalent metal ions using sphagnum moss peat. This equation derives 

the adsorption capacity of solid from the solution concentration. The pseudo second-order 

rate equation has recently been applied to discussions of various reactions such as the 

adsorption of metal ions or organic substances from liquid solutions and the design of 

multistage or batch adsorption facilities. The pseudo second-order equation was used to 

explain the arsenic adsorption kinetics. The pseudo second-order equation is as follows; 

where &2 is the rate constant of adsorption (g/mg min) and h is the initial sorption rate (mg/g 

min). As time approaches zero (t —> o), h can be defined as 

The initial sorption rate (h), the equilibrium sorption capacity (qe), and the pseudo second-

order rate constant (&?) can be determined experimentally from the slope and intercept of the 

plot of t/q versus t. 

t 1 1 
— h 1 

9, 
(1) 

a = ̂  (2) 

3.2 Adsorption isotherm 

Several adsorption isotherms including Brunauer, Emmet, and Teller (BET), Dubinin and 
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Raduskevich (D-R), and Polanyi are available to describe adsorption phenomena, but none of 

them are based on or derived from the Freundlich and the Langmuir (LeVan, 1996), which 

are more common isotherm models for single-solute adsorption. 

The Langmuir equation can be linearized as below: 

where b and qmax are constants. qmax represents the maximum value of qe that can be achieved. 

b is related to the energy of adsorption and increases with the increase in adsorption bond 

strength. The basic assumption of the Langmuir isotherm is that adsorption of solutes 

happens at specific homogeneous sites and forms a monolayer. 

Some important adsorbent characteristics affecting isotherms are surface area, pore size 

distribution, and surface chemistry. For nonporous adsorbents, like ferrihydrite, the 

maximum amount of adsorption is proportional to the amount of surface area within pores 

that is accessible to the adsorbate. However, the surface area of porous adsorbents is not the 

chief influence on adsorption capacity (AWWA, 1999; Lin and Wu, 2001). 

4. Experimental sections 

4.1. Adsorbents 

Ferric oxide (Fe2C>3-PVS; Physical Vapor Synthesis) by Bailey-PVS and aluminum oxide 

(AI2O3-ALOIOI) by Praxair are the two metal oxides used in our experiments as adsorbents. 

Iron oxide is produced from the decomposition of iron chloride solution within the spray 

roasting reactor. This reaction requires the presence of water vapor and oxygen at a 

Qe ^max 
+ (3) 
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temperature between approximately 600 and 1600°F (589 and 1144°K). The basic reactions 

are as follows: 

2FeCl2 + 2H20 + 1/2 02 -» Fe203 + 4HC1 

2FeCl3 + 2H20 -» Fe203 + 6HC1 

This also makes the recovery of hydrochloric acid possible. In order to elucidate the 

possibility of using of iron oxide as an appropriate adsorbent for removal of As(V), 

aluminum oxide, having characteristics similar to those of iron oxide was chosen as a 

comparable adsorbent. Aluminum oxide (A1203) comes from Praxair (Wisconsin, USA), a 

manufacturing company that produces thermal spray powders. This A1203 is coated at high 

temperature to resist to abrasion, erosion, alkali, and acids. 

The colors of iron and aluminum oxide are reddish brown and grayish white, respectively. 

As shown in Figure 3.1, the SEM (Scanning Electron Microscope) images obtained with a 

Philips XL-30 (25kV LaB6 filament) show that Fe203 particles exist as clustered and 

aggregated shapes while A1203 particles occurs as acicular forms with a smooth surface. The 

actual particle sizes of Fe203 can not be determined, but those of A1203 are much larger. The 

length and width of the A1203 particle in the SEM figure seem to be 10-50 |im and 5-20 [im, 

respectively. This matches 5-45 of average particle size of A1203 provided by the 

manufacture. The average particle size of Fe203 was 0.7 according to the company and 

was 7 to 70 times smaller than that of A1203. As provided by manufacturers, the iron oxide 

consists of 99.1% Fe203 and a small portion of other metals such as Cu and Zn, while 

aluminum oxide contains 99.5% A1203 and a small portion of other elements such as Ca and 

Si. The effective pore size, total pore volume, and specific surface area of the two adsorbents 

were measured using BET gas adsorption methods (ASAP2010, Micromeritics, USA) and 
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are provided in Table 3.1. The effective pore size of Fe2Û3 and AI2O3 was found to be 80.49 

À and 75.69 A, respectively, which means that these Fe203 and ALO3 particles generally 

have mesopores (20-500 Â) and not micropores (< 20 A). Total pore volume was 1.02x10" 

2cm3/g for Fe203 and 1.02x10 3cm3/g for A1203 Finally, the specific surface area of Fe2C>3 

was found to be ca. 5.05m2/g, and that of ai2o3 was ca. 0.55 m2/g. 

Table 3.1. Absorbents Properties 

FC2Û3 AI2O3 

Manufacturer Bailey-PVS Oxides (USA) Praxair (USA) 

Purity FeiOs (99.1%) AI2O3 (99.5%) 

Particle size (fxm) 0.7 5^5 

Average pore size (Â) 80.49 75.69 

Pore volume (cm3/g) 1.02x10 2 1.02x10 3 

Specific surface area (m2/g) 5.05 0.55 

The specific surface areas of some of the adsorbents have been reported by several 

investigators; for example, 200 m2/g for ferrihydrite (Raven et al., 1998), 290 m2/g for 

amorphorous ferric oxide (Goldberg and Johnston, 2001), 840 mf/g for iron oxide 

impregnated activated carbon (FeAC) (Vaughan and Reed, 2005), and from 15 m2/g for 

aluminum-loaded Shirasu-zeolite to 300 m2/g for highly porous activated alumina (Xu et al., 

2002; Kim et al., 2004). Fe203 and ALO3 have very small surface areas compared with the 

surface areas of the above absorbents. However, Fe2Û3 has a much larger surface area than 

ai2o3. In general, metal oxides or metal hydroxides do not dissolve in neutral solutions but 
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are easily soluble in acidic and strongly basic solutions because of their amphoteric 

characteristics. Mesoporous alumina was reported to dissolve in both acids (pH < 3) and 

bases (pH > 8) (Kim et al., 2004). However, Fe203 and AI2O3 are almost insoluble in acid 

and alkaline solutions, and once filtered, they do not have significant adverse effects on water 

quality, such as imparting color. Because of these properties, Fe203 and AI2O3 were found to 

be stable and reliable adsorbents for drinking water treatment, and they have been used in our 

As(V) adsorption experiments without further purification. 

4.2. Batch experiment 

Batch experiments were conducted in ajar tester (PB-700TM, Phipps & Bird, USA) to study 

the removal of As(V) with Fe203 and AI2O3 in drinking water. All chemicals were reagent 

grade from Fisher Chemicals, while sodium arsenate (Na2HAs04 7H20) was from Matheson 

Coleman and Bell (Norwood, Ohio, USA). Arsenate solutions were freshly prepared by 

dissolving sodium arsenate in deionized water. The pH values were measured using a 

Corning model 320 pH meter, calibrated using commercial pH 4.01 and 7.0 buffers. The pH 

values of the test solutions were adjusted to 5 to 9 (± 0.1 pH unit) using either diluted 0.1 M 

hydrochloric acid (HC1) or 0.1 M sodium hydroxide (NaOH) solutions before adsorption. 

As(V) concentrations were controlled at 200, 400, and 600 ^g/L (2.67-8 xl0"6M) considered 

reasonable concentrations encountered in the United States and Bangladesh 

(Wickramasinghe et al., 2004). Approximately 0.05-1 g/L of Fe203 or 0.5-6 g/L of A1203 

was added to a solution prepared at a predetermined arsenate concentration using deionized 

water, followed by stirring at 23 ± 0.5°C for 1 hour and 2 hours, respectively. The pH was 

measured, and for analysis, supernatant was collected directly from the jar after reaction 
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(b) ALO3 

Figure 3.1. (a) SEM figure of Fe2C>3 at 1100 x magnification, clustered and aggregated 

shapes; (b) SEM figure of AI2O3 at 1100 x magnification, acicular forms with a smooth 

surface 
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using a 10 ml disposable syringe. The samples were filtered through 0.45 [xm syringe filters 

(Millipore Millex) and analyzed for arsenic. The adsorption capacities were calculated from 

the difference between the initial and the equilibrium concentrations. 

4.3. Kinetics 

Kinetic studies were also conducted at different intervals of time and concentrations in a 

500 mL jacketed reactor vessel (Chemglass, New Jersey, USA) equipped with a constant-

temperature circulating bath (Cole-Parmer, USA) to determine the rate of arsenate removal 

by FeiO] and AI2O3. Kinetic studies were done at the three different temperatures of 5, 25, 

and 45 ± 0.5°C. The same procedure was used for analysis as in adsorption experiments. 

4.4. Arsenate Analysis 

Arsenate concentrations in all the samples were analyzed using Inductively Coupled 

Plasma-Mass Spectrometry (ICP-MS, 4500 Series, HP) following Standard Methods (APHA, 

1999). The detection limit of ICP-MS was 0.1 jig/L for arsenic. The measurements were 

accepted as reasonable data in cases of less than 5 or 10% relative standard deviation (RSD) 

when the arsenic concentration in the samples was greater than or less than 50 |ig/L, 

respectively. In order to amplify the consistency of results, the experiments were performed 

in triplicate and the mean values considered. No detectable As(V) adsorbed on the walls of 

the jar was ascertained through the blank experiments. 

5. Results and discussion 

5.1. The Effects of contact time with adsorbent dosages or initial As(V) concentrations 
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The adsorption rate is influenced by many factors, including solubility and molecular size 

of the adsorbate, characteristics of the adsorbent, and agitation. In addition, temperature 

commonly affects the adsorption rate, solute hydrolysis status, and ionization constant 

concurrently (Do, 1998). The rates of As(V) adsorption on FeoO; were not dependent on 

temperature, while those on AI2O3 were slightly dependent on temperature (figure not 

shown). The effect of temperature may not have a significant impact on As(V) adsorption 

using AI2O3 because of the relatively stable variation of water temperature in water treatment 

systems. 

Figures 3.2 and 3.3 show the rates of As(V) adsorption on Fe203 and A1203 at different 

dosages of adsorbents and different As(V) initial concentrations. The rates of As(V) 

adsorption on Fe203 and AI2O3 were found to be significantly time dependent. The rate of 

As(V) adsorption was found to be higher with high dosages of Fe203 and AI2O3 to As(V) 

and to be higher with lower initial As(V) concentrations to the same dosages of Fe2Q3 and 

AI2O3. To achieve the less than 10 |ig/L of the new arsenic standard from 200 fxg/L of initial 

As(V) concentration at pH 6, the dosages are 0.5 g/L of Fe203 or 3 g/L of A1203. That means 

that to achieve the same equilibrium As(V) concentration for both the adsorbents, AI2O3 was 

required at a dosage of more than six times the dosage of Fe203. Additionally, the As(V) 

adsorption onto Fe203 was rapid in the first 20 minutes and then slowed down considerably 

as the reaction approached equilibrium. However, the majority of adsorption onto ALO3 was 

achieved in the first 60 minutes. Pierce and Moore found that the 99% of As(V) adsorption 

onto amorphous Fe hydroxide was achieved after 4 hours of stirring at each of three final pH 

values (4.0, 8.0, and 9.9). They also observed that the removal rate was somewhat faster for 

higher As(V) concentrations (1 mg/L) than for lower As(V) concentrations (50 ^ig/L). They 
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suggested that an adequate time for As(V) equilibrium on amorphous Fe hydroxide was 24 

hours (Pierce and Moore, 1982). Iron oxide-coated sand was observed to adsorb As(V) 

completely in 50 minutes (Yuan et al., 2002). Activated alumina grains (100 mesh, 

Macherey-Nagel, Germany) have been reported to typically have low adsorption rates, and 

up to 2 days are required to reach half of the equilibrium value (Lin and Wu, 2001). 

Mesoporous alumina prepared by a templating method as an adsorbent may take 

approximately 5 hours to meet the equilibrium As(V) concentration (Kim et al., 2004). 

Compared with those of amorphous Fe hydroxide, activated alumina, and mesoporous 

alumina, the adsorption rates of ALO3 and FC1O3 were found to be higher. Furthermore, the 

adsorption rates of Fe2C>3 were faster than those of ALO3. 

5.2. Adsorption kinetics 

The rate of sorption is one of the most important factors in evaluating the efficiency of 

sorption and in determining the size of water treatment unit processes. In order to estimate 

the rates of adsorption and to identify the behavior of the adsorptive, we conducted 

experiments related to the kinetics of As(V) removal on Fe203 and A1203. 

The adsorption rates of As(V) using Fe203 and A12Q3 are found to fit this pseudo second-

order kinetics equation well. The pseudo second-order rate constant (&2) and the initial 

sorption rate (h) are estimated in Figure 3.4 and are listed in Table 3.2. It is shown that the h 

value for Fe2C>3 (0.26 mg/g min) is higher than that for AI1O3 (0.04 mg/g min), which means 

Fe2C>3, having small particles (0.7 p.m), needs a shorter adsorption time than ALO3, with its 

larger particles (5-45 |im). This result is supported by Pick's second law of diffusion. 
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Figure 3.2. Time courses of As(V) adsorption for different dosage of (a) Fe203 and (b) ALO3. 

Initial As(V) concentration, 200 [xg/L; Sample volume, 0.5 L; Stirring speed, 83 ± 5 rpm; pH 

5 ±0.1; 25°C; error bars = standard error 
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Figure 3.3. Time courses of As(V) adsorption onto (a) Fe,O3 and (b) A1203 for different 

As(V) initial concentrations. Sample volume, 0.5 L; Stirring speed, 83 ± 5 rpm; pH 6 ± 0.1; 

25°C (a) Dosage, 0.8 g/L, (b) Dosage, 3.0 g/L. 
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Figure 3.4. Pseudo second-order sorption kinetics of As(V) onto Fe2Û3 and A1203. Initial 

As(V) concentration, 200 ^g/L; pH 5 ± 0.1; 25°C; dosage of Fe203 and AI2O3, 0.5 g/L 

respectively. 

Table 3.2. Pseudo second-order rate constants 

Pseudo second-order rate constants 

h (mg/g min) k2 (g/mg min) 

FeoOs 0.26 1.68 

AI2O3 0.04 2.64 
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5.3. The Effect of pH 

The uptake of As(V) per mass unit of adsorbent as a function of pH was studied to find 

the optimum pH value for adsorption of As(V) using iron or aluminum oxides. The stirring 

time for arsenate adsorption was kept at 1 hour for iron oxide and 2 hours for aluminum 

oxide. Fe203 and AI2O3 were able to remove more than 95% of As(V) from 200 fig/L of 

arsenate contaminated water and met the new 10 ng/L drinking water standard. 

Figures 3.5 and 3.6 show the arsenic (V) uptakes of Fe2O3 and AI2O3 as a function of pH 

for different dosages of adsorbents and different initial As(V) concentrations. The maximum 

As(V) uptakes of both FeiOi and AI2O3 were achieved at a pH 6. At pH less than 8, 

increasing As(V) uptake rates were observed with decreasing dosages of Fe203 and A1203, 

and increasing As(V) initial concentrations; however, for pH greater than 8, As(V) uptakes 

were little affected by adsorbent dosages or As(V) initial concentrations. Besides, regardless 

of varying pH values, equal As(V) uptake rates for Fe2Oi and AI2O3 were observed for 1 g/L 

of Fe203 and 4 g/L of ALO3. Thus, it can be concluded that the As(V) uptake rates of Fe203 

and A1203 are significantly affected by pH in conditions of comparatively lower dosages of 

adsorbent and higher As(V) initial concentrations, which further means comparatively lower 

As(V) concentrations or higher adsorbent dosages are better for As(V) adsorption on Fe203 

and AI2O3 at varying pH conditions. The uptake of As(V) on Fe2C>3 does not change 

significantly from pH 5 to pH 7 but decreases rapidly at pH 8, while that of AI2O3 decreases 

rapidly at pH 6. This result with Fe2C>3 is comparable to that with amorphous Fe(OH)3, 

where As(V) adsorption was not affected significantly at lower pH (< 7) but decreased 

rapidly at pH > 7 (Pierce and Moore, 1982; Singh et al., 2005). Similar observations were 

made in another study in which FeAC (iron oxide impregnated activated carbon) was used. 
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The adsorption uptake rate of Fe oxides on the surface of FeAC decreases significantly at 

high pH values (Vaughan and Reed, 2005). According to some reports, the decrease in 

adsorption rate occurs because the surface of the adsorbent becomes negatively charged and 

columbic repulsion is enhanced (Hsia et al., 1992; Xu et al., 2002; Yuan et al., 2002). 

According to Stumm and Sulzberger (1992), the decrease is because of ligand exchange, 

where anions react with surface hydroxides on the adsorbents. Others have described these 

observation as the formation of an inner-sphere surface complex on adsorbents such as 

goethite (a-FeOOH) or iron oxide-coated sand (IOCS) (Benjamin et al., 1996; Grossi et al., 

1997). Thus, it can be concluded that the form of H2As04~ may be primarily adsorbed on 

Fe2O3 at a lower pH. However, with increasing pH, the monovalent arsenate anion does not 

get adsorbed on Fe2O3 due to a negative surface charge and coulombic repulsion (Brookins, 

1988; Zouboulis et al., 1993). Finally, the arsenate anions interact with the surface sites of 

Fe203 that are occupied by hydrogen ions and transform to Fe(H2AsO4)°, Fe(HAs04y, and 

Fe(AsO4)^. 

The As(V) uptake of AI2O3 decreases sharply at pH values differing from 6 when 

compared with the Fe203 as shown in Figure 3.6. Thus, it is concluded that A1203 is more 

likely than Fe?03 to absorb H2As04 at lower pH but may prefer OH to H2As04" at higher 

pH (> 6). According to some researchers, Fe is superior to A1 in ligand exchange with 

arsenate anions on the surface of Fe and A1 oxide, that is, arsenic removal efficiencies with 

different electrode materials in an electrocoagulation process follow the sequence: iron > 

aluminum (Ratna Kumar et al., 2004) and therefore supports the above-noted observations. 

This result is also supported by several studies where activated alumina used in the pH range 

of 5.5 to 8.5 preferred OH- to H2As04~ (Trussell et al., 1980; Rosenblum and Clifford, 1983; 
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A WW A, 1999). Based on studies of activated alumina and aluminum-loaded Shirasu-zeolite 

(Xu et al., 2002; AWWA, 1999), the As(V) adsorption mechanism of A1203 can also be 

considered a ligand exchange process between As(V) and the hydroxide groups. According 

to these results for Fe203 and A1203, we can conclude that the favorable arsenate adsorption 

of both adsorbents takes place at pH 6. This experimental result, where As(V) removal 

uptake on Fe203 and A1203 increased at low pH and decreased at high pH, was the same as 

that observed with other absorbents of Fe and A1 oxides such as ferric chloride (Hering et al., 

1996), ferrihydrite (Raven et al., 1998), ferric oxide (Dzombak and Morrel, 1990), hydrous 

ferric oxide (Wilkie and Hering, 1996), goethite and gibbsite (Manning and Goldberg, 1996), 

amorphous aluminum oxide (Anderson et al., 1976), and activated alumina (Singh et al., 

2001) as well as amorphous ferric hydroxide and ferric-impregnated activated carbon. It was 

revealed that surface or groundwater should be controlled in the pH range of less than 7 to 

achieve better arsenate removal efficiency when Fe203 or A1203 is used as an absorbent, and 

that Fe203 is less sensitive to pH than A1203. The pH values of the solution were not 

changed significantly on using Fe203 and A1203 and were almost between 4 and 7 for Fe203 

and 5.3 and 7.4 for A1203 (note that pH values were adjusted from 5 to 9 ± 0.1 before 

adsorption with Fe203 and A1203). 

Surface area, pore size distribution, and surface chemistry are the main characteristics of 

an adsorbent that can affect its organic or inorganic compound removal efficiency (AWWA, 

1999). For nonporous adsorbents, the surface area is reported as the most important factor in 

removal efficiency and uptake capacity by several investigators (Lin and Wu, 2001; Xu et al., 

2002). Both Fe203 and A1203 belong to the group of nonporous adsorbents, although the 

total pore volume and total specific surface area of Fe203 are 10 times greater than those of 
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A1203, as stated previously. Therefore, it can be inferred that the surface area is the most 

important factor influencing As(V) adsorption on Fe203 and A1203. Our experimental results 

support the observation that Fe203, with a higher surface area, has a higher As(V) uptake rate 

than A1203. 

5.4. Adsorption isotherm 

To design an appropriate sorption system for removing As(V) in drinking water, it is 

important to find the well-fitted isotherm curves of Fe203 and A1?03. 

Figure 3.7 shows the relationship between As(V) equilibrium concentration and the 

adsorption capacity of Fe203 and A1203 at the range of pH 5 to 9. With increasing pH, a 

decreasing trend in the amount of arsenate taken up by A1203 was observed. In the isotherm 

studies, it was found that the experimental data for adsorption on Fe203 and A1203 fitted well 

with the Langmuir adsorption isotherm in the range of pH 5 to 9. Plots of adsorption 

capacity (mg/g) vs. equilibrium As(V) concentration in Figure 3.7 yielded straight lines for 

each of five different pH values. The Langmuir curves and parameters for As(V) removal 

using Fe203 and A1203 as shown in Figure 3.8 and in Table 3.3. The calculated parameters 

of the Langmuir isotherm model for Fe203 and A1203, as well as the correlation coefficients 

(R2) are listed in Table 3.3. It is found that, at pH 6, the correlation coefficient (R2) values 

for the Langmuir isotherm for As(V) on Fe203 and A1203 are 0.92 and 0.90, respectively. 

Therefore, the maximum adsorption capacities of Fe203 and A1203 at pH 6 were estimated 

from the Langmuir isotherm, and found to be 0.66 mg/g and 0.17 mg/g, respectively. These 

results show that Fe203 is a better absorbent than A1203. As noted above, the parameter b is 

a function of the strength of adsorption. The larger b means that the adsorption bond is 
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stronger. With a larger b value, Langmuir isotherm curves approach a saturation plateau. The 

isotherm shows that no more adsorbate can be removed even at low loading ratios of 

adsorbate to adsorbent. In turn, the adsorption capacity is independent of the equilibrium 

As(V) concentration. As shown in Table 3.3, the value of b for Fe203 and A1203 increases 

with decreasing pH. Thus, we can conclude that at lower pH, the As(V) adsorption bond 

with Fe203 and A1203 is stronger and more irreversible, and that the As(V) adsorption bond 

with Fe203 is stronger than with A1203. However, at pH 9, As(V) adsorption bonds with 

Fe203 and A1203 are very weak, and the qe values change remarkably with even small 

changes in the equilibrium As(V) concentration, Ce. Based on the assumptions of the 

Langmuir isotherm, it can be estimated that both Fe203 and A1203 should have mainly 

homogenous sites. 

Compared with some adsorbents that having high As(V) adsorption capacity such as 

ferrihydrite, amorphous aluminum hydroxide, and mesoporous alumina, (Thirunavukkarasu 

et al., 2001; Anderson et al., 1976; Kim et al., 2004), the adsorption capacities of Fe203 and 

A1203 are quite low. However, compared with other adsorbents that have lower As(V) 

adsorption capacities such as IOCS, activated alumina, and activated red mud 

(Thirunavukkarasu et al., 2001; Lin and Wu, 2001; Altundogan et al., 2002), Fe203 can 

specifically be considered as a very useful adsorbent for As(V) removal in drinking water 

due to its very low cost. 

6. Conclusions 

Iron oxide (Fe203) and aluminum oxide (A1203) were found to be good and inexpensive 

adsorbents for lowering As(V) initial concentration in drinking water due to the fast 
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Figure 3.5. Arsenate adsorption onto Fe2O3 as a function of pH at (a) different dosages and 

(b) As(V) initial concentrations. Sample volume, 1 L; Stirring speed, 130 ± 5 rpm; 25°C; 

Stirring time, 1 hour (a) Dosage of Fe,O3, 0.05-1.0 g/L; As(V) initial concentration, 200 

^ig/L; (b) Initial As(V) concentration, 200-600 |ig/L; dosage of Fe,O3, 0.5 g/L 
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Figure 3.6. Arsenate adsorption onto AI2O3 as a function of pH at (a) different dosage and (b) 

As(V) initial concentrations. Sample volume, 1 L; Stirring speed, 130 ± 5 rpm; 25°C; 

Stirring time, 2 hours (a) Dosage of AI2O3, 0.5-6.0 g/L; As(V) initial concentration, 200 

^g/L (b) Initial As(V) concentration, 200-600 |xg/L; dosage of A1203, 2.0 g/L 
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Table 3.3. Arsenate adsorption isotherm parameters of FeaCh and A1203 

adsorption pH 
adsorbents isotherms parameters 5 6 7 8 9 

b (L/mg) 42.01 47.12 32.83 23.36 5.09 
FC2O3 Langmuir 9™» (mg/g) 0.65 0.66 0.56 0.49 0.47 

R2 0.90 0.92 0.87 0.86 0.85 
b (L/mg) 10.08 10.31 9.76 9.13 8.99 

AI2O3 Langmuir 9mc(mg/g) 0.16 0.17 0.14 0.13 0.13 
R2 0.86 0.90 0.87 0.87 0.80 

7. Recommendations 

Fe?03 seems to be good for POE and POU water treatment systems because of the 

advantages outlined above. POE and POU arsenate removal systems utilizing iron oxide or 

aluminum oxide can be considered for either small-scale commercial water treatment 

systems for community water supplies or individual home treatment systems. These 

absorbents (Fe^O^ and AI2O3) for removing arsenate should be very useful in most endemic 

areas where arsenate-contaminated wells are used as water resources (e.g., China, India, and 

Bangladesh) as simplicity in application and low cost are often the essential factors for 

successful performance of adsorbents. 
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1. Abstract 

Iron oxide (EeoO;) and nonactivated aluminum oxide (ALO3) were found to be good and 

cost-effective adsorbents for removal of As(V) in drinking water in the presence of 

competing solutes including chloride, nitrate, sulfate, vanadium (V), selenium (IV), 

phosphate, and silica. It was observed that in a solution with an As(V) concentration of 200 

|xg/L and a pH 6, As(V) adsorption on Fe203 was not affected by 500 mg/L of chloride, 

nitrate, or sulfate, respectively, but it was slightly affected by 100 p,g/L of selenium (IV) and 

vanadium (V). This behavior of these competing solutes can be explained by the fact that the 

complexes of As(V) with EeiC^ are stronger than those formed by competing solutes; 

however, binding of Se(IV) and V(V) with Fe203 can occur even though the binding 

mailto:leeuwen@iastate.edu
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affinities of Se(IV) and V(V) are weaker than that of As(V) with FeiO;. The adsorption of 

As(V) on AI2O3 was not affected by 500 mg/L concentration levels of chloride and nitrate 

anions, and very little by 100 [ig/L concentration levels of Se(IV) and V(V) ions, 

respectively. However, despite the non variant concentration levels of sulfate after adsorption, 

the adsorption of As(V) on A1203 was moderately affected by more than 250 mg/L 

concentration levels of sulfate. Such an effect of sulfate on adsorption of As(V) may be due 

to surface heterogeneity. Both phosphate and silica had significant adverse effects on As(V) 

adsorption onto Fe203 and A1203 because the structure of phosphate is very close to that of 

arsenic and because silica ions form negatively charged surface sites and thus increase 

electrostatic repulsion. The As(V) adsorption capacities of Fe203 and A1203 were observed 

to be 0.616 mg/g and 0.098 mg/g, respectively, at a concentration of 200 ^g/L of As(V) in 

the absence of competing solutes in a previous work (Jeong et al., 2005). Phosphate anion is 

found to be the most prominent solute competing against As(V) for adsorption on Fe203 and 

A1203, at even at concentration levels that are low in comparison with those of other 

competing solutes. Therefore, Fe203 was found to be a better adsorbent than A1203 for 

removing As(V) in the presence of competing solutes in water in the range of concentrations 

tested. 

Keywords: Adsorption; Arsenic; As(V); Iron oxide; Aluminum oxide; Sulfate; Selenium(FV); 

Vanadium(V); Phosphate; Silica 

2. Introduction 

Arsenic(As) is well known as a useful compound in industrial applications such as 
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smelting, agricultural pesticides and insecticides (LANL, 2004). However, arsenic (As) has 

also been considered as a strong poisonous chemical due to its odorless and nearly tasteless 

nature (Buchanan, 1962; Ferguson and Gavis, 1972). Even small amounts of arsenic in 

drinking water can have adverse effects on human health. Known consequences include 

cardiovascular diseases, conjunctivitis, and skin cancer (Tseng et al., 1968; Klaassen et al., 

1996; Zhang et al., 2004; Safiullah et al., 2004; Yean et al., 2005; Zhang and Stanforth, 

2005). Of organic and inorganic arsenic, inorganic arsenic commonly exists in two valence 

states, arsenite [As(III)] and arsenate [As(V)], in groundwater or surface water (Ferguson and 

Gavis, 1972; Reynolds et al., 1999). Erosion, dissolution, and weathering are some of the 

sources of inorganic arsenic in groundwater. Inorganic arsenic also has adverse effects on 

human health. As(III) effects on human health are more adverse than those of As(V); 

however, it is known to transform easily to As(V) in oxygenated environments (Brookins, 

1988). In addition, arsenate removal efficiency using mineral oxides is found to be greater 

than that of arsenite. Therefore, the preoxidation of As(III) to As(V) using oxidizing agents 

including oxygen and ozone, prior to adsorption is recommended (Oscarson et al., 1983; 

Frank and Clifford, 1986). 

Since the WHO (World Health Organization) has recommended 10 pg/L as the guideline 

value for arsenic in drinking water (WHO, 2001), the US Environmental Protection Agency 

(USEPA) has also promulgated 10 |ig/L as their new arsenic standard for drinking water (US 

EPA, 2001a). Adsorption on metal oxides such as iron (Fe) and aluminum (Al) oxide is 

recommended by several researchers as one of most promising arsenic removal technologies. 

Other effective adsorbents for arsenic are amorphous ferric hydroxide (Pierce and Moore, 

1982), granular ferric hydroxide (GFH) (Thirunavukkarasu et al., 2003), amorphous 
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aluminum oxide (Anderson et al., 1976), and activated alumina (Rosenblum and Clifford, 

1983). 

We elucidated the possibility of Fe203 and A1203 being considered as nonregenerative 

adsorbent médias in a previous work (Jeong et al., 2005). It was observed that arsenate 

adsorption capacity varied between pH 5 and 9, and the highest adsorption of As(V) on both 

Fe203 and A1203 was observed at pH 6. Specifically, based on the simplicity in application 

and economics, Fe2O3 was proposed as a better adsorbent of As(V) for small point of use 

(POU) systems such as a single water tap delivering arsenic-contaminated ground or surface 

water. However, some soluble solutes in water were reported to reduce the adsorption of 

arsenic on metal oxides. Specifically silicate, phosphate, and sulfate were notorious as 

competing solutes when metal oxides were used for arsenic removal, and these competing 

solutes are commonly found in the groundwater and surface water in Bangladesh or in New 

Hampshire in the United States (Meng et al., 2002; Roberts et al., 2004; Hug et al., 2005). 

Welch et al. (1998) reported that more than 4 mg/L of phosphate (as P) occurs in the shallow 

groundwater from the southern Carson Desert in the United States. 

Several researchers have reported that the presence of competing solutes results in a 

reduction of the amount of As(V) adsorbed on Fe and A1 oxides. In one study, the presence 

of phosphate resulted in a severe reduction in arsenate adsorption by ferrihydrite (Jain and 

Loeppert, 2000), goethite [a-FeOOH] and gibbsite [y-Al(OH)3] (Manning and Goldberg, 

1996b), kaolinite [Al2Si205(0H)4], montmorillonite [(Na, Ca)(Al, Mg)6(Si401())3(0H)6-

nH20], and illite [(K,H3O)(Al,Mg,Fe)2(Si,Al)4Oi0{OH)2,(H2O)}] (Manning and Goldberg, 

1996a). In another study, the high concentration of sulfate slightly reduced the removal of 

arsenate on alumina and hydrous ferric oxide, although the competing effect of sulfate anions 
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was of a lesser degree than that of phosphate anions (Wilkie and Hering, 1996; Xu et al., 

1988). Meng et al. (2000) showed that when using the triple-layer model (TLM), the 

removal of As(V) by coprecipitation and adsorption with ferric chloride was moderately 

affected in the presence of silicate, but not in the presence of sulfate. Lee et al. (2004) 

discovered that 35.5 mg/L of silica and 13 pig/L of vanadium (V) in groundwater had an 

unfavorable impact on As(V) adsorption using GFH. Davis and Misra (1997) showed that 

selenium (IV) could be a competing solute in the adsorption of Se(IV) and As(V) onto 

aluminum-based oxides. Thus, it is necessary to analyze the competitive effect of co-

occurring solutes on As(V) adsorption onto Fe203 and AI2O3, and to evaluate the possibility 

of these oxides as appropriate adsorbents for removing As(V) in drinking water. 

The competing effect of solutes on As(V) removal with Fe203 and A1203 was quantified 

by comparing As(V) removal efficiencies or adsorption capacities with and without the 

presence of solutes. Our experiments were conducted with the most common solutes in 

ground or surface water, such as chloride, nitrate, and sulfate, as well as phosphate and 

silicate. Vanadium (V) and selenium (IV) were also tested as competing solutes in As(V) 

adsorption onto Fe203 and A1203 because vanadium (V) is known as one of the phosphate

like mononuclear anions (Wehrli and Stumm, 1989; Wanty and Goldhaber, 1992); and 

because selenium (IV) plays an important role in soil and environmental chemistry due to its 

toxicity at high concentrations (Balistrieri and Chao, 1987; Tokunaga et al., 1996). A study 

of solutes competing with As(V) adsorption onto Fe203 and A1203, as in this paper, will be 

very helpful for developing more effective water treatment processes for removal of As(V) in 

drinking water. 
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3. Materials and Methods 

3.1. Preparation of adsorbents and solutions 

Iron oxide (Fe203-PVS; Physical Vapor Synthesis, Bailey-PVS, USA) and aluminum 

oxide (AI2O3-ALOIOI, Praxair, USA), as mentioned in a previous paper (Jeong et al., 2005), 

were used in our experiments for studying the competing effect of solutes on As(V) 

adsorption. These oxides, Fe203 and AI9O3, are nonporous adsorbents with small specific 

surface areas (5.05 and 0.55 m2/g) and have been used in our experiments without further 

purification. 

Chemicals including NaCl, NaN03, Na2S04, Na2HP04, Na2Si03-9H20, and V205 were 

reagent grade materials from Fisher Chemicals (USA). Sodium arsenate (Na2HAs04-7H20) 

and sodium selenite (Na2SeÛ3) were from Matheson Coleman and Bell (Norwood, Ohio, 

USA) and from Sigma-Aldrich (USA), respectively. Stock solutions of arsenate (HAs04
2\ 

10 mg/L), chloride (CV, 1 g/L), sulfate (S04
2-, 1 g/L), nitrate as nitrogen (NO3-N, 1 g/L), 

phosphate (HP04
2, 1 g/L), silica (SiO?2 , 1 g/L), vanadium as vanadate (V5+, 5 mg/L), and 

selenium as selenite ion (SeO^2', 5 mg/L) were prepared by dissolving the respective 

chemicals in deionized water. All of these solutions, with the exception of the silica solution, 

were further diluted to suitable concentrations on the day of use. Silica stock solution was 

prepared every week and rapidly mixed with arsenate-contaminated water to maintain the 

main silicate species found in natural aquatic systems (monomeric H4Si04); the quick 

dilution was proposed to avoid the formation of silicate polymers (Stumm and Morgan, 1996; 

Roberts et al., 2004). 
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3.2. Batch Experiment 

Batch experiments were performed in a jar tester (PB-700TM, Phipps & Bird, USA) 

having six jars each of 2 L volume and six two-paddle stirrers to study the effect of 

competing ions on As(V) adsorption using Fe203 and A^Og in drinking water. The As(V) 

concentration was 200 |ig/L (2.67xl0"6M), and the dosages of Fe203 and A1203 were 0.05-1 

g/L and 0.5-6 g/L, respectively. Each of the competing solutes was added into separate 

water samples. Amounts of solutes added in the samples were based on the concentration of 

solutes in the natural water and drinking water quality standard of the US EPA (Meng et al., 

2002; US EPA, 2001b; APHA, 1999; Heinz Center, 2000). Generally, the concentrations of 

sulfate and chloride were much higher than those of nitrate and silica in the water. The 

concentrations of phosphate, vanadium (V) and selenium (IV) were usually less than 1 mg/L 

in ground or surface water. The pH values of the test solutions were adjusted to 6 ± 0.1 using 

either diluted 0.1 M hydrochloric acid (HC1) or 0.1 M sodium hydroxide (NaOH) solutions 

before adsorption. To avoid the interference of other ions, all glassware was cleaned by 

soaking in 0.1 M HN03 and 0.5 M HC1 and rinsed four times with deionized water. In order 

to avoid silica leaching from the glass beaker, polyethylene beakers were used in the 

experiments with silica and As(V) following Standard Methods (APHA, 1999). No 

detectable solutes adsorbed on the walls of the jar were ascertained through the blank 

experiments. At room temperature (25 ± 0.5°C), As(V) adsorption onto Fe2Q3 and A1203 

with competing solutes was conducted by stirring (130 ± 5 RPM) for 1 hour and 2 hours, 

respectively. For analysis after adsorption, supernatant of samples was collected from the jar 

using a 10 mL disposable syringe. The samples were filtered through 0.45 fxm syringe filters 

(Millipore Millex) and analyzed for arsenic and competing anions. The As(V) adsorption 
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uptakes were estimated from the difference between the initial and the equilibrium As(V) 

concentrations. The experiments were performed in triplicate and the mean values were 

accepted. 

3.3. Methods of Analysis; arsenate and solutes 

Arsenate [As(V)], vanadium [V(V)], and selenium [Se(IV)] concentrations in all the 

samples were measured by Inductively Coupled Plasma-Mass Spectrometry [ICP-MS, 4500 

Series, Hewlett Packard (HP)] following Standard Methods (APHA, 1999). Because high 

concentrations of chloride interfere in measuring As(V), the interference correction equation 

provided by HP was applied to identify and measure arsenic concentrations. The analysis of 

phosphate (HP04
2~ as total P) was also performed using ICP-MS (Dixit and Hering, 2003). 

The detection limits of ICP-MS were 0.1 ng/L for arsenic, and 1 |ig/L for phosphate, 

vanadium (V), and selenium (IV), respectively. The measurements were considered as 

reasonable data in cases of less than 10% relative standard deviation (RSD) for lower 

concentrations and the RSD was ± 5% in the range of 50 to 600 ^g/L solute concentration. 

According to Standard Methods (APHA, 1999), the analysis of anions, such as nitrate 

(NO3-N), sulfate (S04
2 ), and chloride (CI ), was conducted in our laboratory using an ion 

chromatograph (IC-DX-120, Dionex) equipped with a Dionex Ion Pac As 14 (4mm x 

250mm) column and conductivity detection. The eluent solution used for ion 

chromatography (IC) was 3.5 mM Na^CO^/l mM NaHCO^. The molybdosilicate method 

was used for detecting silica concentrations (APHA, 1999). The concentration of silica was 

analyzed using a UV visible spectrophotometer (DMS 100, Varian) with a 1 cm light path at 

a 410nm wavelength. The detection limit for silica was 1 mg/L. The digestion with 
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NaHC03 was not used for checking the existence of molybdate-unreactive silica. Prior to 

each analysis, standard solutions of each solute were prepared by diluting stock solutions of 

each solute with deionized water. 

4. Results and discussion 

Adsorption of As(V) onto Fe203 and A1203 in the presence of some ions including sulfate 

(SO42 ), chloride (CI ), nitrate (N03-N), vanadium (V), selenium (IV), silica (Si03
2 ), and 

phosphate (HPO42 ) was observed respectively for 200 |ig/L As(V) concentrations at pH 6 ± 

0.1, which was shown to be the best pH for removal of As(V) in a previous study (Jeong et 

al., 2005). Figure 4.1 shows the As(V) removal efficiencies of 0.5 g/L of Fe2O3 and 4 g/L of 

A1203 in the presence of high concentrations of competing solutes. Figure 4.1(a) shows that 

at the 0.5 g/L dosage of Fe203, chloride, nitrate, and sulfate solutes hardly affected the As(V) 

removal efficiencies, while vanadium (V) and selenium (IV) slightly affected the As(V) 

adsorption and silica and phosphate ions significantly decreased As(V) removal efficiencies. 

Figure 4.1(b) shows that at the 4 g/L dosage of A1203, chloride, nitrate, vanadium (V), and 

selenium (IV) solutes have little effect on the As(V) removal efficiencies; sulfate ions 

moderately reduced As(V) removal efficiencies; silica and phosphate ions significantly 

decreased As(V) removal efficiencies. 

4.1. Chloride and Nitrate 

The adsorption of As(V) on Fe203 and A1203 was found to be independent of the 

concentration of chloride and nitrate at pH 6 (figure not shown). Also, it was observed that 

the concentrations of these ions remained the same before and after adsorption (figure not 
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shown). Xu et al. (2002) reported that the chloride and nitrate anions did not affect the 

adsorption of As(V) on aluminum-loaded shirasu-zeolite, which was similar to what we 

observed for A1203 in our study. This observation can be attributed to the fact that 

complexes of chloride and nitrate with Fe2O3 and A1203 are much weaker than those of 

arsenate. 

4.2 Sulfate 

The As(V) adsorption isotherm curves for Fe203 and A1203 are shown on Figure 4.2. 

The As(V) adsorption isotherm curves were hardly affected by lower concentrations of 

sulfate; however, the isotherms showed a moderately decreasing trend at higher sulfate 

concentrations, specifically at concentrations greater than 250 mg/L. This result is supported 

by several studies. Meng et al. (2000) reported that up to 300 mg/L of sulfate concentration 

had no apparent effect on the removal of As(V) with ferric chloride at a pH value of 6.8. 

This behavior was attributed to the fact that the binding affinity of sulfate for ferric 

hydroxide was much weaker than that of As(V). Zeng (2004) revealed that the interference 

of 460 mg/L of sulfate ions on arsenate adsorption onto an iron (III) oxide-silica binary oxide 

adsorbent (with an iron/silicate molar ratio of 3) was insignificant. Xu et al. (1988) stated 

that a high concentration of sulfate slightly reduced the removal of arsenate on alumina, 

although the competing effect of sulfate anions is smaller than that of phosphate anions. The 

heterogeneous surface of an adsorbent is known to affect adsorption more in muti-adsorbate 

than in single-adsorbate solutions (Balistrieri and Chao, 1990). The adsorption of As(V) on 

the heterogeneous surface of A1203, which was shown in the SEM picture of A1203 in a 
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Figure 4.1. Effects of various competing solutes on As(V) removal efficiency using (a) Fe,O3 

and (b) AI2O3. Initial As(V) concentration, 200 ng/L; sulfate and chloride, 500 mg/L for 

each; Se(IV) and V(V), 100 juig/L for each; nitrate, 20 mg/L; silica, 10 mg/L; phosphate, 1000 

[ig/L; pH 6 ± 0.1 (a) Dosage, 0.5 g/L, (b) Dosage, 4.0 g/L 
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previous work (Jeong et al., 2005), is affected by sulfate concentrations that are relatively 

high in comparison with the initial As(V) concentration. 

As shown in Figure 4.3, the concentration of sulfate after As(V) adsorption on A1203 

remained unchanged from its initial concentration, although Wijnja and Schulthess (2000) 

observed through Raman and attenuated total reflectance-Fourier transformed infrared (ATR-

FTIR) that both inner- and outer-sphere surface complexes of sulfate ions occur on goethite 

and aluminum hydroxide surfaces without arsenate anions. By comparing the spectral 

intensities of sulfate anions on goethite and A1 oxide, they further revealed that complexation 

of sulfate anions with aluminum oxide is weaker than that with Fe oxide. Thus, we conclude 

that the interaction of sulfate ions with surfaces of Fe2O3 and A1203 is weaker than that of 

As(V). 

4.3 Selenium 

The selenium (Se) ion, one of the essential micronutrients, is known to play an important 

role in soil and environmental chemistry due to its toxicity at high concentrations (Balistrieri 

and Chao, 1987; Tokunaga et al., 1996). High concentrations of selenium in soil often 

accumulate in plants and can then have toxic effects on herbivores (Peak and Sparks, 2002). 

The primary drinking water standard for selenium is 50 pig/L in the United States (US EPA, 

1999b). The selenate anion (SeO^l (oxidation state VI) is the stable species under oxidizing 

conditions and adsorbs relatively weakly onto metal oxide surfaces. However, the selenite 

anion (Se03
2 ) (oxidation state IV) is the stable species under slightly suboxic conditions and 

binds strongly to metal oxide surfaces (Balistrieri and Chao, 1987; Elrashidi et al., 1987). 

As shown on Figure 4.4, the As(V) adsorption capacity of Fe203 slightly decreases while 
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that on AI2O3 was little affected. In addition, as shown on Figure 4.5, the concentration of 

selenium (IV) after adsorption reduces rapidly with increasing of Fe^O^ dosage, while it 

reduces moderately with increasing AI2O3 dosage. At 50 11 g/L initial Se(V) concentration, 

95% of Se(IV) was adsorbed on 0.5 g/L Fe203, while only 10% of Se(IV) was removed by 

0.5 g/L of AI2O3. 

Our result with Se(IV) is supported by the study of Peak and Sparks through experiments 

of Extended X-ray adsorption fine structure and ATR-FTIR. According to Peak and Sparks 

(2002), selenate ions form inner-sphere and/or outer-sphere surface complexes and are 

adsorbed on iron oxides and hydroxides such as hematite, goethite and hydrous ferric oxide 

(HFO) by pH and ionic strength. Wijnja and Schulthess (2000), using ATR-FTIR 

spectroscopy, reported that selenate (Se04
2-) ions are adsorbed on goethite and A1 oxide and 

that complexation of selenate with Fe oxide is stronger than that with A1 oxide. These results 

indicate that the binding affinity of As(V) with FC2O3 and AI2O3 is stronger than that of 

selenite, and the complexation of selenite with Fe20g is stronger than that with AI2O3. 

4.4 Vanadium 

Vanadium exposure is known to cause lung irritation, chest pain, cough, and sore throat, 

but no significant health effect on human has yet been found (US EPA, 1999b). The 

maximum level of vanadium recommended for irrigation by the United Nations Food and 

Agriculture Organization is 0.1 mg/L (APHA, 1999). Vanadium occurs in the +3, +4, and +5 

oxidation states under aqueous conditions and exists in the +5 oxidation state in oxic 

seawater. 

As shown on Figure 4.6, vanadium (V) slightly affects the As(V) adsorption capacity of 
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Figure 4.2. Adsorption isotherm of As(V) onto (a) Fe,O^ and (b) AI2O3 as a function of 

sulfate concentration. Initial As(V) concentration, 200 ng/L; pH 6 ± 0.1 
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Fe^Og but has little effect on that of AI1O3. The As(V) adsorption capacity of FeaOs was not 

changed in the presence of V(V) at 10 fxg/L concentration. Similar results were observed 

with A1203 in the presence of V(V) at 50 p,g/L concentration. In high V(V) concentrations 

(>50 ^g/L), however, the adsorption isotherm curve of As(V) on Fe203 showed a gradual 

decrease. It was found that the isotherm curves reach a saturation plateau with increasing 

vanadium (V) concentrations. This result matches with the report by Lee et al. (2004) that 13 

Hg/L of vanadium (V) in groundwater had an unfavorable impact on As(V) adsorption using 

granular ferric hydroxides. 

As shown in Figure 4.7, the remaining V(V) concentration after adsorption decreased 

significantly with an increasing dosage of Fe^C^. From a 50 ng/L initial V(V) concentration, 

0.5 g/L of both adsorbents adsorb 90% or 10% of the V(V), respectively. Vanadium (V) can 

be more easily adsorbed on FeiC^ than on AI9O3. This result matches the findings of Shieh 

and Duedall (1988) that suggest that the removal of V(V) on amorphous ferric oxyhydroxide 

can be reached in quasi-equilibrium condition within 1 hour. Golob et al. (1971) reported 

that vanadium (V) is absorbed poorly on activated aluminum oxide. Several investigators 

discovered that in dilute solutions the principal species of V(V) are mononuclear vanadate 

oxyanions |VGo(OH), and V03(0H)2"], which are similar to phosphate anions (Wanty and 

Goldhaber, 1992; Wehrli and Stumm, 1989), and that vanadate oxyanions can particularly 

adsorb through ligand exchange onto the negatively charged iron oxide or clay mineral 

surfaces such as goethite (a-FeOOH) (Cruywagen and Heyns, 1991; Sigg and Stumm, 1980; 

Peacock and Sherman, 2004). Because of these characteristic of vanadium (V), we can 

assume that V(V) competes with As(V) for adsorption on surface sites on Fe203 but the 

interaction of As(V) with the surface of Fe2C>3 is still stronger than that of V(V). 
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Figure 4.4. Adsorption isotherm of As(V) onto (a) Fe,O^ and (b) ALO3 as a function of 

Se(IV) concentration. Initial As(V) concentration, 200 pg/L; pH 6 ± 0.1 
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4.5 Phosphate 

Phosphate is known as a growth-limiting nutrient, which plays an important role in the 

growth of organisms. Phosphates, classified as orthophosphates, condensed phosphate, and 

organically bound phosphate, occur in natural water and wastewater through laundering, 

fertilizing, and weathering (US EPA, 1999b). Depending on the pH value, phosphates can 

have any of the following four forms in dilute aqueous solution: phosphate ion (P04
3), 

hydrogen phosphate ion (HP04
2~), dihydrogen phosphate ion (H2PQ4 ), or aqueous 

phosphoric acid [H3P04(aq)]. P04
3" ions are more prevalent in strongly basic conditions, and 

HP04
2" ions are more common in weakly basic conditions. H2P04 ions and aqueous H3P04 

predominate in weakly acid conditions and strongly acid conditions, respectively (Wikipedia, 

2005). 

Figure 4.8 shows that phosphate (HP04
2~) can sharply decrease the As(V) adsorption 

capacity of Fe203 and A1203 as a function of phosphate concentration. Less than 50 ug/L 

phosphate concentration does not affect the adsorption of As(V) using either of the two 

adsorbents (Fe203 and A1203). However, As(V) adsorption on A1203 is influenced more than 

that on Fe203 by phosphate concentrations over 50 |ig/L. In fact, to achieve the same results 

for As(V) adsorption with A1203 as with Fe203, higher dosages of A1203 are required. As 

shown in Figure 4.8, the As(V) adsorption isotherm data for Fe203 and A1203 satisfactorily 

fit the lower concentration of phosphate, but the isotherm curves for A1203 show a 

significantly decreasing trend in the presence of more than 50 ng/L of phosphate. This result 

matches several researchers' findings. Meng et al. (2002) reported that phosphate (HPQ4
2 ) 

in concentrations over 0.25 mg/L was an important factor affecting the removal of As(V) on 

iron hydroxides. Manning and Goldberg (1996b) also studied the decreased As(V) 
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Figure 4.6. Adsorption isotherm of As(V) onto (a) Fe?03 and (b) ALO3 as a function of V(V) 

concentration. Initial As(V) concentration, 200 jig/L; pH 6 ± 0.1 
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adsorption in the presence of phosphate within the pH range of 2 to 11 on goethite (a-

FeOOH) and gibbsite (y-Al(OH)3). Xu et al. (2002) observed that the adsorption of As(V) on 

aluminum-loaded Shirasu-zeolite was significantly reduced by the addition of phosphate ions. 

Figure 4.9 shows that phosphate anions compete with arsenate ions and adsorb onto Fe^O^ 

and AI2O3 in the water. The remaining phosphate concentration following adsorption 

decreased significantly with increasing dosages of Fe^O; and moderately with increasing 

dosages of AI2O3. At 500 ng/L initial phosphate concentration, 1 g/L of Fe,C>3 can remove 

78% of phosphate, while same dosage of AI2O3 adsorbs only 25% of the phosphate anion. 

This result seems reasonable considering the fact that it is consistent with the results of 

several reports regarding phosphate adsorption. Madrid et al. (1974) indicated that phosphate 

ions can easily adsorb onto three kinds of Fe oxides (goethite, lipidocrocite, and hematite) at 

pH 3.2 to 9.6 and they found that the reactions fit well to both Langmuir and Freundlich 

isotherms. Nooney et al. (1996) also found that phosphate uptake was rapid on a thin Fe203 

film of adsorbent in 10 minutes of exposure time. Javid et al. (2004) reported that gibbsite 

(y- AI2O3) was an effective anion exchange material for phosphate anions at a low pH and 

that phosphate uptake on y- AI2O3 results from electrostatic interactions (ion exchange) 

rather than nonelectrostatic adsorption. 

The competing effect of phosphate anions on Fe^C^ and AI2O3 can be explained using 

several investigators' statements. Phosphate is very adsorptive on the surfaces of iron and 

aluminum oxides and has significant effects on the adsorption of arsenic at low concentration 

because of the structural resemblances between arsenic and phosphate ions (Pierce, 1981; 

Wasay et al., 1996; El Khatib and Balba, 2004). Therefore, we have conclusions similar to 

those discussed above. Phosphate competes with arsenate for binding sites on Fe203 and 
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AI2O3 due to the similarity of their structure. But the complexes of As(V) with Fe^O] and 

AI2O3 should be stronger than those of phosphate according to the findings of Meng et al. 

(2002), which suggest that the constant of binding affinity (Kapp) value of As(V) is seven 

times greater than that of phosphate on iron hydroxides. 

4.6 Silica 

Commonly found soluble forms of silica in natural water are H2Si04 and H2Si04\ and the 

average concentration of silica is 14 mg/L as Si in surface and groundwater (APHA, 1999). 

There is no maximum contaminant level (MCL) for silica in drinking water, but high levels 

of silica can form precipitates, increasing turbidity (US EPA, 1999b). 

The results in Figure 4.10 show the As(V) adsorption capacity of Fe203 and AI2O3 as a 

function of silica concentration. The As(V) adsorption isotherms of Fe2C>3 and AI2O3 are 

found to show significant decreasing trends in relation to silica concentrations. The 

adsorption of As(V) on Fe?03 at 1 mg/L silica concentration increases slightly while that on 

AI2O3 increases moderately. We assume that very low concentrations of silica have an 

enhancing effect on the adsorption of As(V) because of favorable electrostatic effects at the 

surface of Fe?03and ALO3 (Wilkie and Hering, 1996). The adsorption of As(V) decreased 

significantly with the increasing silica concentrations from 5 to 10 mg/L and decreasing 

dosages of Fe203 and AI2O3. The silica solute has more adverse effects on AI2O3 than on 

Fc203. Considering the average silica concentration of 14 mg/L in surface and groundwater 

(APHA, 1999), the effect of silica is very important on As(V) adsorption using Fe203 and 

ALO3. This result matches the results of several reports regarding the effect of silica or 

silicate on arsenic removal. Meng et al. (2000) reported that with 10 mg/L of silicate 



www.manaraa.com

94 

0.7 

0.6 

(a) 
phosphate (|ig/L) 

• 0 
X50 
O 500 
A 1000 

5 0.3 

« 0.2 ;» , 

5 0.4 

0.00 0.05 0.10 0.15 0.20 

Equilibrium As(V) (Ce, mg/L) 

0.25 

0.12 

•s 
E 

O" 

0.10 

0.08 

a 
s 
g 

0.06 

0.04 

0.02 

(b) 
phosphate (|_ig/L) 

• 0 
A 50 
X 500 
O 1000 

1  

0.00 i  
/ $ 1 

s i-

0.00 0.04 0.08 0.12 0.16 
Equilibrium As(V) (Ce, mg/I.) 

0.20 

Figure 4.8. Adsorption isotherm of As(V) onto (a) Fe,O3 and (b) A1203 as a function of 

phosphate concentration. Initial As(V) concentration, 200 pi g/L; pH 6 ± 0.1 



www.manaraa.com

95 

«0.8 

» 0.6 

=" 0.4 

1.0 

2 
« 0.8 

S" o 

0.6 ! CS 
I 

=» 0.4 

5 
0.2 

0.0 

0.05 0.15 0.25 0.50 

Dosage ofFe203 (g/L) 

(b) 

£ 

0.5 1.0 2.0 4.0 
Dosage of AI203 (g/L) 

1.00 

6.0 

Figure 4.9. Comparison of remaining phosphate concentrations after As(V) adsorption on 

various dosages of (a) Fe203 and (b) AI2O3. Initial phosphate concentration, 500fxg/L; pH 

6±0.1 



www.manaraa.com

96 

concentration, the removal of As(V) on ferric chloride decreased from approximately 90 to 

45%, and the As(V) adsorption capacity was also reduced from 0.96 to 0.27 mg/g Fe. In 

addition, they suggested that the As(V) adsorption reduction resulted from the strong 

association of silicate with ferric hydroxide, which reduced the surface sites available for 

As(V) and increased electrostatic repulsion between As(V) and the negatively charged 

surface sites. Meng et al. (2002) also showed that the adsorption of As(V) on iron 

hydroxides was not changed at Si02 concentrations of less than 1,4mg/L because the binding 

constant of silicate was 800 times inferior to that of As(V), but it was reduced from 99% to 

85% at silica concentrations higher than 1.5 mg/L. Singh et al. (2005) found that the 

dissolved silicate competes with As(V) in the coprecipitation and adsorption removal 

processes using ferrihydrite, and they proposed that the effect of silicate is to cause a 

combination of complexation reactions between Fe(III), Si(FV), and As(V) species, and 

competition between As(V) and Si(IV) for adsorption sites on ferrihydrite. Our finding is 

also supported by the fact that 35.5 mg/L of silica and 13 pi g/L of vanadium (V) in 

groundwater had an unfavorable impact on As(V) adsorption using granular ferric 

hydroxides (Lee et al., 2004). Therefore, we infer that comparatively high concentrations of 

silica affect the adsorption of As(V) on Fe2C>3 and ALO3 due to a reduction in available 

surface sites and increasing electrostatic repulsion. 

As shown in Figure 4.11, the concentration of silica after As(V) adsorption on Fe2C>3 did 

not change, compared with its initial concentration, and changed very little after As(V) 

adsorption on ALO3. Some researchers have shown by estimating the apparent adsorption 

constants that the binding affinity of the anions for iron hydroxide sites decreased in the 

following order: OH- >arsenate > phosphate > silicate > sulfate (Madrid et al., 1974; Meng et 
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al., 2002). Based on the low binding affinity of silica, we can infer that silica can hardly be 

adsorbed on FeiO? and AI2O3.  
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Figure 4.10. Adsorption isotherm of As(V) on (a) Fe203 and (b) ALO3 as a function of silica 

concentration. Initial As(V) concentration, 200 pi g/L; pH 6 ± 0.1 
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4.7. Comparison of As(V) adsorption parameters ofFezO3 and AI2O3 with competing solutes 

In the previous study (Jeong et al., 2005), the adsorption of As(V) on both Fe^O] and 

AI2O3 fitted the Langmuir isotherm well. To compare the adsorption capacity of As(V) on 

FeiO] and AI2O3 in typical concentrations of competing solutes such as phosphate and silica, 

plots of adsorption capacity (mg/g) vs. equilibrium As(V) concentration were linearized 

using mean values of experimental data (figure not shown). Table 4.1 shows the As(V) 

adsorption parameters of the Langmuir isotherm on Fe203 and AI2O3 in the presence of 

competing solutes such as sulfate, Se(FV), V(V), phosphate, and silica. For 200 pi g/L of 

initial As(V) concentration at pH 6, the maximum As(V) adsorption capacity (qmax) and 

correlation coefficient (R2) in the absence of competing solutes were observed to be 0.616 

mg/g and 0.93 using Fe2Û3, and 0.098 mg/g and 0.94 using AI2O3, as estimated from the 

Langmuir isotherm in a previous study (Jeong et al., 2005). In the presence of phosphate at 

5 0 0  p i  g / L  c o n c e n t r a t i o n ,  t h e  a d s o r p t i o n  c a p a c i t y  ( q m a x )  a n d  t h e  c o r r e l a t i o n  c o e f f i c i e n t  ( R 2 )  

were reduced to 0.327 mg/g and 0.59, respectively, using Fe2Û3; and 0.019 mg/g and 0.61, 

respectively, using AI2O3. Silica at 5 mg/L concentration also reduced qmax and R2 to 0.327 

mg/g and 0.74, respectively, using Fe203; and 0.045 mg/g and 0.82, respectively, using A1203. 

Considering the adsorption bond strength, b, selenite ion bonds on Fe2Û3 and AI2O3 were 

much weaker than those of the other competing solutes. Silica ion bonds are stronger than 

the others on Fe203, while phosphate ion bonds are much stronger than the others on AI2O3.  

These results show that Fe2Û3 is a better absorbent than AI2O3 in the presence of competing 

solutes, specifically, phosphate and silica. 

Therefore, based on the lower concentration level of phosphate compared with other 

compet i n g  s o l u t e s ,  a n d  t h e  v a l u e s  o f  t h e  a d s o r p t i o n  c a p a c i t y  a n d  c o r r e l a t i o n  c o e f f i c i e n t  ( R 2 )  
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discussed above, phosphate anions are found to be the most prominent solute competing 

against As(V) for adsorption on FeoO] and AI2O3. Considering the values of adsorption 

capacity and dosages, Fe^C^ is found to be a better adsorbent than AI2O3 for removing As(V) 

in the presence of competing solutes in water. 

Table 4.1. Langmuir adsorption isotherm parameters of As(V) on Fe203 and AI2O3 in the 

presence of competing solutes 

200 ng/L of As(V), pH 6 + As(V) adsorption parameters 
Adsorbents competing solutes b (L/mg) Qmax (mg/g) R2 

No solutes 60.53 0.616 0.93 

Sulfate, 250 mg/L 81.33 0.572 0.96 
Fe203 Selenium(rV), 50 pig/L 32.84 0.503 0.95 

Vanadium(V), 50 pi g/L 91.49 0.521 0.96 

Phosphate, 500 pi g/L 82.56 0.327 0.59 

Silica, 5 mg/L 145.58 0.327 0.74 

No solutes 44.56 0.098 0.94 

Sulfate, 250 mg/L 50.31 0.087 0.96 

AI2O3 Selenium(IV), 50 pi g/L 7.06 0.076 0.87 
Vanadium(V), 50 pi g/L 55.19 0.098 0.89 

Phosphate, 500 pi g/L 154.98 0.019 0.61 

Silica, 5 mg/L 11.86 0.045 0.82 
Conditions: initial As(V) concentration 200 pig/L, pH 6 ± 0.1 

5. Conclusions 

This study, describing the effect of competing solutes on adsorption of As(V) on Fe203 

and AI2O3 was performed as an extension to our previous work. The subject solutes of our 

study include sulfate, chloride, nitrate, Se(IV), V(V), phosphate, and silica. In the presence 

of these competing solutes, the adsorption of As(V) onto Fe203 and AI9O3 was conducted to 
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estimate the possibility of these oxides as appropriate adsorbents for removing As(V) from 

drinking water. High concentrations of chloride and nitrate did not affect the adsorption of 

As(V) on Fe203 and AI2O3. This observation was ascertained by the fact that the 

concentrations of these anions did not change before and after adsorption, and was attributed 

to the possibility of the formation of weak complexes of these solutes with Fe?03 and AI2O3.  

Due to surface heterogeneity, high concentration of sulfate has a moderate adverse effect on 

the adsorption of As(V) on AI2O3. However, high concentration levels of sulfate did not 

seem to affect the adsorption of As(V) on Fe20, because sulfate binding affinity for Fe oxide 

may be much weaker than that of As(V). Besides, the concentration of sulfate anions did not 

change before and after adsorption on either adsorbent. Because the complexes of Se(IV) 

and V(V) with FeiOg are stronger than those with AI1O3, these Se(FV) and V(V) ions may 

compete with As(V) ions on the surface of Fe203. Therefore, the relatively higher 

concentration (100 pig/L) of Se(IV) and V(V) had a slightly unfavorable impact on the As(V) 

removal efficiency and adsorption isotherm for Fe2O3 but not those for A1203. However, the 

most significant interference with the removal of As(V) on Fe203 and ALO3 occurs in the 

presence of phosphate and silica solutes. The phosphate anion is found to be the most 

competitive solute on Fe203 and ALO3, considering its lower concentration and the value of 

adsorption capacity and the correlation coefficient (R2). Besides, a strong bond with Fe203 

and A1203 occurs in the presence of silica and phosphate solutes, respectively. Considering 

the value of adsorption capacity and dosage, Fe2C>3 is found to be a better adsorbent than 

A1203 to remove As(V) in the presence of competing solutes in water. In addition, Fe203 

may be used as a preliminary adsorbent to minimize the competing effect for some solutes 
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prior to As(V) adsorption, considering that Fe203 can easily adsorb phosphate, Se(FV), and 

V(V) in water. 
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CHAPTER 5. CONCLUSIONS 

GENERAL DISCUSSION 

Iron oxide (FeiOg) and aluminum oxide (AI2O3) have been studied as prospective 

adsorbents for removing arsenic (V) from drinking water under various conditions of 

temperature, concentration, time, and competing solutes. FeaOg and AI2O3, both of which are 

nonporous adsorbents, were found to be good and inexpensive adsorbents for As(V) removal 

from drinking water at lower pH (< 7), specifically pH 6, due to their fast adsorption of 

arsenate anions and high As(V) removal efficiencies. The adsorption of As(V) onto Fe^C>3 

was affected by the same solutes, such as phosphate, silica, Se(IV), and V(V), while that onto 

AI2O3 was affected by sulfate as well as by phosphate and silica. Both phosphate and silica 

had significant adverse effects on adsorption of As(V) with Fe2Û3 and AI2O3; however, the 

phosphate anion was found to be the most prominent solute competing against As(V). 

Considering the cost and the adsorption capacity of As(V) with and without competing 

solutes, Fe203 is a more suitable adsorbent than A1203 to remove As(V) from drinking water. 

RECOMMENDATIONS FOR APPLICATION 

Fe2C>3 and AI1O3 have many advantages including possibly low cost, easy 

maintenance, fast adsorption rate, and no need for regeneration, and they have no adverse 

effects on water quality after adsorption. Specifically, Fe203 is more economical than AI2O3 

because it is generated from the ferrous metals industry as a by-product. Due to its low cost 

and simplicity in application, Fe2C>3 should be useful to apply to small-scale commercial 

water treatment systems or individual home treatment systems as POE or POU unit processes 

in most endemic areas where arsenate-contaminated wells are used as water resources, such 

as China, Chile, Taiwan, Bangladesh, and the western United States. Pilot-scale studies are 

recommended for developing appropriate types of adsorption process units using these 
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adsorbents (e.g., columns, filters, or dosing in powdered form). In addition, it is suggested 

that Fe203 can be used as a preliminary adsorbent to minimize the competing effect of other 

solutes prior to As(V) adsorption because Fe203 has a better ability than A1203 to remove 

competing solutes, specifically, phosphate, selenium (IV) and vanadium (V). 
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APPENDIX A. ADDITIONAL FIGURES 

Figure Al. The colors of Fe,O3 (top) and AI2O3 (bottom) 
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Figure A2. As(V) adsorption onto ALO3 as functions of (a) stirring speed and (b) 

temperature. Initial As(V) concentration (Co), 200 pig/L; Dosage of AI2O3, 3 g/L; Sample 

volume, 0.5 L; pH 6 ± 0.1; (a) Temperature, 25 ± 0.5°C; (b) Stirring speed, 83 ± 5 rpm 
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